精英家教网 > 高中数学 > 题目详情
11.下列四种说法:
①命题“?x∈R,都有x2-2<3x”的否定是“?x∈R,使得x2-2≥3x”;
②若a,b∈R,则2a<2b是log${\;}_{\frac{1}{2}}$a>log${\;}_{\frac{1}{2}}$b的必要不充分条件;
③把函数y=sin(-3x)(x∈R)的图象上所有的点向右平移$\frac{π}{4}$个单位即可得到函数y=sin(-3x-$\frac{π}{4}$)(x∈R)的图象;
④若向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2,且$\overrightarrow{a}$与b的夹角为$\frac{2π}{3}$,则|$\overrightarrow{a}$+$\overrightarrow{b}$|=$\sqrt{3}$.
其中正确的说法是①②④.

分析 ①利用命题的否定定义即可判断出结论.
②若2a<2b,则a<b,当a或b为负数时,log${\;}_{\frac{1}{2}}$a>log${\;}_{\frac{1}{2}}$b不成立,若log${\;}_{\frac{1}{2}}$a>log${\;}_{\frac{1}{2}}$b,利用对数函数的单调性即可得出a,b的大小关系.
③利用三角函数的平移变换即可判断出正误.
④由题可知,$\overrightarrow{a}•\overrightarrow{b}$=-1,再利用$|\overrightarrow{a}+\overrightarrow{b}{|}^{2}$=${\overrightarrow{a}}^{2}+2\overrightarrow{a}•\overrightarrow{b}$+${\overrightarrow{b}}^{2}$即可得出.

解答 解:①利用命题的否定定义可知:正确.
②若2a<2b,则a<b,当a或b为负数时,log${\;}_{\frac{1}{2}}$a>log${\;}_{\frac{1}{2}}$b不成立,若log${\;}_{\frac{1}{2}}$a>log${\;}_{\frac{1}{2}}$b,∴0<a<b,∴2a<2b.故②正确.
③把y=sin(-3x)的图象上所有点向右平移$\frac{π}{4}$,得到y=sin$sin[-(x-\frac{π}{4})]$=$sin(-3x+\frac{3π}{4})$,故③不正确.
④由题可知,$\overrightarrow{a}•\overrightarrow{b}$=1×2 cos$\frac{2π}{3}$=-1,∴$|\overrightarrow{a}+\overrightarrow{b}{|}^{2}$=${\overrightarrow{a}}^{2}+2\overrightarrow{a}•\overrightarrow{b}$+${\overrightarrow{b}}^{2}$=3,则|$\overrightarrow{a}$+$\overrightarrow{b}$|=$\sqrt{3}$,故④正确.
故答案为:①②④.

点评 本题考查了简易逻辑的判定方法、函数的单调性、三角函数平移变换、向量数量积运算性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)=x2•sinx,各项均不相等的数列{xn}满足$|{x_i}|≤\frac{π}{2}(i=1,2,3,…n)$.令F(n)=(x1+x2+…+xn)•[f(x1)+f(x2)…+f(xn)](n∈N*).给出下列三个命题:
①存在不少于3项的数列{xn},使得F(n)=0;
②若数列{xn}的通项公式为${x_n}={(-\frac{1}{2})^n}$(n∈N*),则F(2k)>0对k∈N*恒成立;
③若数列{xn}是等差数列,则存在n∈N*使得F(n)<0成立
其中真命题的序号是①②.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.执行如图所示的程序框图,若输入A的值为2.5,则输出的P值为(  )
A.6B.7C.8D.9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知a是大于0的实数,函数f(x)=x2(x-a). 
(1)若f′(2)=0,求a值;
(2)求f(x)在区间[0,2]上的最小值;
(3)在(1)的条件下,设g(x)=f(x)+$\frac{m}{x-1}$是[3,+∞)上的增函数,求实数m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设命题甲:关于x的不等式x2+2ax+4≤0有解,命题乙:设函数f(x)=loga(x+a-2)在区间(1,+∞)上恒为正值,那么甲是乙的必要不充分条件.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知$\frac{a}{1+i}$=1-bi,其中a,b是实数,i是虚数单位,则|a-bi|=$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.某种计算机病毒是通过电子邮件进行传播的,表格是某公司前5天监测到的数据:
第x天12345
被感染的计算机数量y(台)12244995190
则下列函数模型中能较好地反映在第x天被感染的数量y与x之间的关系的是(  )
A.y=12xB.y=6x2-6x+12C.y=6•2xD.y=12log2x+12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.执行如图所示的程序框图,若输入S的值为$\frac{1}{2}$,则输出S的值为(  )
A.-1B.$\frac{1}{2}$C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.假设某地区人口每年增加1%,求25年后的该地区人口是现在人口的多少倍.(精确到0.01)

查看答案和解析>>

同步练习册答案