分析 求出f($\frac{1}{4}$)=$lo{g}_{4}\frac{1}{4}$=-1,从而f(f($\frac{1}{4}$))=f(-1)=a-2×(-1)=a+2,由此利用f(f($\frac{1}{4}$))=5,能求出a.
解答 解:∵f(x)=$\left\{\begin{array}{l}a-2x,x≤0\\{log_4}x,x>0\end{array}$,
∴f($\frac{1}{4}$)=$lo{g}_{4}\frac{1}{4}$=-1,
∴f(f($\frac{1}{4}$))=f(-1)=a-2×(-1)=a+2,
∵f(f($\frac{1}{4}$))=5,
∴a+2=5,解得a=3.
故答案为:3.
点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | α丄γ,m∥β | B. | α 丄γ,l丄m | C. | m∥β,l丄m | D. | α∥β,γ丄β |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com