精英家教网 > 高中数学 > 题目详情
7.若双曲线$\frac{y^2}{a^2}-\frac{x^2}{b^2}$=1的离心率为$\sqrt{3}$,则其渐近线方程为y=±$\frac{\sqrt{2}}{2}$x.

分析 根据题意,得双曲线的渐近线方程为y=±$\frac{a}{b}$x.再由双曲线离心率为$\sqrt{3}$,得到c=$\sqrt{3}$a,由定义知b=$\sqrt{2}$a,代入即得此双曲线的渐近线方程.

解答 解:∵双曲线C方程为:$\frac{y^2}{a^2}-\frac{x^2}{b^2}$=1(a>0,b>0)
∴双曲线的渐近线方程为y=±$\frac{a}{b}$x
又∵双曲线离心率为$\sqrt{3}$,
∴c=$\sqrt{3}$a,可得b=$\sqrt{2}$a
因此,双曲线的渐近线方程为y=±$\frac{\sqrt{2}}{2}$x
故答案为:y=±$\frac{\sqrt{2}}{2}$x.

点评 本题给出双曲线的离心率,求双曲线的渐近线方程,着重考查了双曲线的标准方程与基本概念,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.函数y=|x+1|+|x-2|的最小值为M;
(Ⅰ)求实数M的值;
(Ⅱ)若不等式$\sqrt{a-x}+\sqrt{4+2x}$≤M,(其中a>0)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)=$\left\{\begin{array}{l}1,x为有理数\\ 0,x为无理数\end{array}$,给出下列命题:
①函数f(x)为偶函数;
②函数f(x)是周期函数; 
③存在xi(i=1,2,3),使得(xi,f(xi))为顶点的三角形是等边三角形;
④存在xi(i=1,2,3),使得(xi,f(xi))为顶点的三角形是等腰直角三角形.
其中的真命题是①②③(填上你认为正确的所有命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设x>0,y>0,向量$\overrightarrow a$=(1-x,4),$\overrightarrow b$=(x,-y),若$\overrightarrow a$∥$\overrightarrow b$,则x+y的最小值为9.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某企业拟生产一种如图所示的圆柱形易拉罐(上下底面及侧面的厚度不计),易拉罐的体积为108πml.设圆柱的高度为hcm,底面半径半径为rcm,且h≥4r,假设该易拉罐的制造费用仅与其表面积有关,已知易拉罐侧面制造费用为m元/cm2,易拉罐上下底面的制造费用均为n元/cm2(m,n为常数)
(1)写出易拉罐的制造费用y(元)关于r(cm)的函数表达式,并求其定义域;
(2)求易拉罐制造费用最低时r(cm)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数f(x)=$\sqrt{2}$sin(2x+$\frac{π}{4}$),则f(x)在x∈[0,$\frac{π}{2}$]时的值域是[-1,$\sqrt{2}$];又若将函数y=f(x)的图象向左平移a(a>0)个单位长度得到的图象恰好关于点($\frac{π}{4}$,0)对称,则实数a的最小值为$\frac{π}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.己知f(x)=x3-ax在[1,+∞)上是单调增函数,则a的取值范围是(  )
A.(3,+∞)B.(1,3)C.(-∞,3)D.(-∞,3]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若复数z=a+bi(i为虚数单位,a,b∈R)在复平面内对应点为Z(a,b),O为坐标原点,将实轴非负半轴绕点O逆时针旋转到OZ,转过的最小角叫复数z的辐角主值,记作arg(z),则arg($\frac{2}{1-i}$)的值为(  )
A.$\frac{π}{4}$B.$\frac{3π}{4}$C.$\frac{5π}{4}$D.$\frac{7π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如图,$\overrightarrow{OC}=2\overrightarrow{OP}$,$\overrightarrow{AB}=2\overrightarrow{AC}$,$\overrightarrow{OM}=m\overrightarrow{OB}$,$\overrightarrow{ON}=n\overrightarrow{OA}$,若m=$\frac{3}{8}$,那么n=(  )
A.$\frac{1}{2}$B.$\frac{2}{3}$C.$\frac{3}{4}$D.$\frac{4}{5}$

查看答案和解析>>

同步练习册答案