分析 先根据向量平行得到$\frac{1}{x}$+$\frac{4}{y}$=1,再利用基本不等式即可求出最值.
解答 解:因为$\overrightarrow a$∥$\overrightarrow b$,
所以4x+(1-x)y=0,
又x>0,y>0,
所以$\frac{1}{x}$+$\frac{4}{y}$=1,
故x+y=($\frac{1}{x}$+$\frac{4}{y}$)(x+y)=5+$\frac{y}{x}$+$\frac{4x}{y}$≥9.
当$\frac{y}{x}$=$\frac{4x}{y}$,$\frac{1}{x}$+$\frac{4}{y}$=1同时成立,即x=3,y=6时,等号成立.
(x+y)min=9.
故答案为:9.
点评 本题考查了向量平行的条件和基本不等式的应用,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(x)=sinx | B. | f(x)=|x| | C. | f(x)=$\frac{1}{2}$(2x+2-x) | D. | f(x)=ln$\frac{2-x}{2+x}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4$\sqrt{5}$ | B. | $\frac{4\sqrt{5}}{3}$ | C. | $\frac{8}{3}$ | D. | $\frac{4}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {0} | B. | {0,1} | C. | {0,1,2} | D. | {0,1,2,4} |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com