精英家教网 > 高中数学 > 题目详情

【题目】甲乙两人参加竞选,结果是甲得票,乙得. 试求:唱票中甲累计的票数始终超过乙累计的票数的概率.

【答案】

【解析】

若唱甲当选,则记为1;若唱乙当选,则记为. 每一种唱票方式都对应一个由个1和组成的排列. 用表示谴责项的和,在直角坐标系中标出点,并将点与点用线段联结. 这样,每一种唱票方式都对应一条联结的折线. 而甲累计的票数始终领先等价于所有的点都在轴的上方,即折线与轴无交点(我们称为“好折线”,反之为“坏折线”).

显然,联结的“自由”(无限定条件)折线有条,这是因为在段中选择段为上升有种方法.

对每一条坏折线,有如下两种情形:一是经过点,二是经过点.

对于第一种情形,坏折线是由的自由折线,从而,这样的折线有条.

对于第二种情形,注意到过的坏折线必与轴相交,设其横坐标最小的交点为. 将此折线位于左边的部分作关于轴的对称折线,便得到过点的坏折线,于是,坏折线的条数也有条. 所以,合乎条件的好折线的条数为.

综上所述,所求的概率为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】南昌市在2018年召开了全球VR产业大会,为了增强对青少年VR知识的普及,某中学举行了一次普及VR知识讲座,并从参加讲座的男生中随机抽取了50人,女生中随机抽取了70人参加VR知识测试,成绩分成优秀和非优秀两类,统计两类成绩人数得到如下的列联表:

优秀

非优秀

总计

男生

35

50

女生

30

70

总计

45

75

120

1)确定的值;

2)试判断能否有90%的把握认为VR知识测试成绩优秀与否与性别有关;

附:

0.25

0.15

0.10

0.05

0.025

0.010

1.323

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正方体中,点E是棱的中点,点F是线段上的一个动点.有以下三个命题:

①异面直线所成的角是定值;

②三棱锥的体积是定值;

③直线与平面所成的角是定值.

其中真命题的个数是( )

A. 3 B. 2 C. 1 D. 0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种出口产品的关税税率t.市场价格x(单位:千元)与市场供应量p(单位:万件)之间近似满足关系式:,其中k.b均为常数.当关税税率为75%时,若市场价格为5千元,则市场供应量约为1万件;若市场价格为7千元,则市场供应量约为2万件.

(1)试确定k.b的值;

(2)市场需求量q(单位:万件)与市场价格x近似满足关系式:.P = q时,市场价格称为市场平衡价格.当市场平衡价格不超过4千元时,试确定关税税率的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C的焦点坐标为,点,过点P作直线l交抛物线CAB两点,过AB分别作抛物线C的切线,两切线交于点Q,且两切线分别交x轴于MN两点,则面积的最小值为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为,准线为,抛物线上存在一点,过点,垂足为,使是等边三角形且面积为.

(1)求抛物线的方程;

(2)若点是圆与抛物线的一个交点,点,当取得最小值时,求此时圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】5名同学进行投篮比赛,决出第1名至第5名的不同名次,教练在公布成绩前透露,五名同学中的甲乙名次相邻,丙不是第一名,丁不是最后一名,根据教练的说法,这5名同学的名次排列最多有( )种不同的情况.

A.28B.32C.54D.64

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,梯形中,,过分别作,垂足分别,已知,将梯形沿同侧折起,得空间几何体 ,如图

1,证明:平面

2,线段上存在一点,满足与平面所成角的正弦值为,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)讨论函数的单调性;

(2)若函数有两个极值点,且恒成立,求的取值范围.

查看答案和解析>>

同步练习册答案