精英家教网 > 高中数学 > 题目详情
13.对于命题p和命题q,“p且q为真命题”的充要条件是(  )
A.p或q为真命题B.¬p且¬q为真命题C.p或q为假命题D.¬p或¬q为假命题

分析 由p且q为真,得到p真q真即¬p或¬q为假,从而求出答案.

解答 解:若“p且q为真命题”,
则p真q真,¬p或¬q为假命题,
故选:D.

点评 本题考查了复合命题的判断,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.某同学用球形模具自制棒棒糖.现熬制的糖浆恰好装满一圆柱形容器(底面半径为3cm,高为10cm),共做了20颗完全相同的棒棒糖,则每个棒棒糖的表面积为9πcm2(损耗忽略不计).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.一个盒子里装有大小均匀的6个小球,其中有红色球4个,编号分别为1,2,3,4,白色球2个,编号分别为4,5,从盒子中任取3个小球(假设取到任何一个小球的可能性相同).
(1)求取出的3个小球中,含有编号为4的小球的概率;
(2)在取出的3个小球中,小球编号的最大值设为X,求随机变量X的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.为了解大学生观看某电视节目是否与性别有关,一所大学心理学教师从该校学生中随机抽取了50人进行问卷调查,得到了如下的列联表,若该教师采用分层抽样的方法从50份问卷调查中继续抽查了10份进行重点分析,知道其中喜欢看该节目的有6人.
喜欢看该节目不喜欢看该节目合计
女生5
男生10
合计50
(Ⅰ)请将上面的列联表补充完整;
(Ⅱ)是否有99.5%的把握认为喜欢看该节目节目与性别有关?说明你的理由;
(Ⅲ)已知喜欢看该节目的10位男生中,5位喜欢看新闻,3位喜欢看动画片,2位喜欢看韩剧,现从喜欢看新闻、动画片和韩剧的男生中各选出1名进行其他方面的调查,求喜欢看动画片的男生甲和喜欢看韩剧的男生乙不全被选中的概率.
参考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d;
①当K2≥3.841时有95%的把握认为ξ、η有关联;
②当K2≥6.635时有99%的把握认为ξ、η有关联.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若随机变量X的分布列如表所示,则a2+b2的最小值为(  )
 X=i
 P(X=i) $\frac{1}{4}$ a $\frac{1}{4}$ b
A.$\frac{1}{24}$B.$\frac{1}{16}$C.$\frac{1}{8}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知点P是曲线y=$\frac{{3-{e^x}}}{{{e^x}+1}}$上一动点,α为曲线在点P处的切线的倾斜角,则α的最小值是(  )
A.0B.$\frac{π}{4}$C.$\frac{2π}{3}$D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某学习小组有8个同学,从男生中选2人,女生中选1人参加数学、物理、化学三种竞赛,要求每科均有1人参加,共有180种不同的选法.那么该小组中男、女同学各有多少人?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在直四棱柱ABCD-A1B1C1D1中,底面ABCD为等腰梯形,AB∥CD,AD=DC=AA1=2,AB=4,E、F、G分别是棱AA1、AD、AB的中点.
(Ⅰ) 求证:EF⊥B1D1
(Ⅱ) 求证:EF∥平面GCC1
(Ⅲ) 求二面角B-GC1-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在一个可任意放置、里面空间是正方体的容器中装有一定量的水,有下列结论:
①水面可以是正三角形;
②水面可以是正六边形;
③水面不可能是五边形;
④当水面是四边形时,水的形状是棱柱.
其中正确结论的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案