精英家教网 > 高中数学 > 题目详情
20.已知函数f(x)=|x|.
(1)解关于x的不等式f(x-1)<a,a∈R
(2)解不等式f(x+1)+f(2x)≤4.

分析 (1)分a>0和a≤0两种情况讨论,可得原不等式的解集;
(2)f(x+1)+f(2x)≤4可化为:$\left\{\begin{array}{l}x≤-1\\-3x-1≤4\end{array}\right.$,或$\left\{\begin{array}{l}-1<x<0\\ 1-x≤4\end{array}\right.$,或$\left\{\begin{array}{l}x≥0\\ 3x+1≤4\end{array}\right.$,解得答案.

解答 解:(1)若a>0,不等式f(x-1)<a可化为:|x-1|<a,解得1-a<x<1+a;
故原不等式的解集为:(1-a,1+a);
若a≤0,则不等式f(x-1)<a的解集为∅…(4分)
(2)由f(x+1)+f(2x)≤4得:
|x+1|+|2x|≤4
∴原问题等价于|x+1|+|2x|≤4,
∴$\left\{\begin{array}{l}x≤-1\\-3x-1≤4\end{array}\right.$,或$\left\{\begin{array}{l}-1<x<0\\ 1-x≤4\end{array}\right.$,或$\left\{\begin{array}{l}x≥0\\ 3x+1≤4\end{array}\right.$
解得:-$\frac{5}{3}$≤x≤1.
故原不等式的解集为:[-$\frac{5}{3}$,1]…(10分)

点评 本题考查的知识点是分段函数的应用,分类讨论思想,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知向量$\overrightarrow{a}$=(-3,2),$\overrightarrow{b}$=(2,1),$\overrightarrow{c}$=(3,-1),t∈R.
(1)向量$\overrightarrow{a}$-$\overrightarrow{b}$会与非零向量t$\overrightarrow{c}$共线吗?
(2)t为何值时,$\overrightarrow{a}$-t$\overrightarrow{b}$与$\overrightarrow{c}$共线.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图,在边长为25cm的正方形中挖去边长为23cm的两个等腰直角三角形,现有均匀的粒子散落在正方形中,问粒子落在中间阴影区域的概率是(  )
A.$\frac{529}{625}$B.$\frac{96}{625}$C.$\frac{23}{25}$D.$\frac{2}{25}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.f(x)=$\frac{x}{1-\sqrt{1-x}}$的定义域是(-∞,0)∪(0,1].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数f(x)的定义域为D,若对于任意x1,x2∈D,当x1<x2时,都有f(x1)≤f(x2),则称函数f(x)在D上为非减函数.设函数f(x)在[0,1]上为非减函数,且满足以下三个条件:①f(0)=0;②f(1-x)+f(x)=1;③f($\frac{x}{3}$)=$\frac{1}{2}$f(x).则f($\frac{1}{3}$)+f($\frac{5}{12}$)的值(  )
A.0B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数f(x)满足f(10x)=x+lg5,则f(2)=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若函数f(x)=ax2-(3a-1)x+a2在[1,+∞)上是增函数,则a的取值范围是(  )
A.0<a<1B.0≤a≤1C.0<a≤1D.0≤a<1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设f(x)=x2+bx+c(b、c∈R).
(Ⅰ)若f(x)在[-2,2]上单调,求b的取值范围;
(Ⅱ)若f(x)≥|x|对一切x∈R恒成立,求证:b2+1≤4c;
(Ⅲ)若对一切满足|x|≥2的实数x,都有f(x)≥0,且$f(\frac{{2{x^2}+3}}{{{x^2}+1}})$的最大值为1,求证:b、c满足的条件是3b+c+8=0且-5≤b≤-4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f (x)是定义在实数集R上不恒为零的偶函数,且f (-1)=0,若对任意的实数x都有xf (x+1)=(1+x) f (x)成立,则$\sum_{k-0}^{2010}f(\frac{k}{2})$ 的值是(  )
A.0B.$\frac{1}{2}$C.1D.$\frac{5}{2}$

查看答案和解析>>

同步练习册答案