10£®ÈçͼÊÇijÖֿɹ̶¨ÔÚǽÉÏµÄ¹ã¸æ½ðÊôÖ§¼ÜÄ£ÐÍ£¬ÆäÖÐAD=6£¬CÊÇABµÄÖе㣬¡ÏBCD=$\frac{¦Ð}{3}$£¬¡ÏBAD=¦È£¨¦È¡Ê£¨$\frac{¦Ð}{9}$£¬$\frac{¦Ð}{3}$£©
£¨¢ñ£©Èô¦È=$\frac{¦Ð}{4}$£¬ÇóABµÄ³¤£»
£¨¢ò£© ÇóBDµÄ³¤f£¨¦È£©£¬²¢Çóf£¨¦È£©µÄ×îСֵ£»
£¨¢ó£© ¾­Êг¡µ÷²é·¢ÏÖ£¬Ä³µØ¶Ô¸ÃÖÖ½ðÊôÖ§¼ÜµÄÐèÇóÁ¿Óë¦ÈÓйأ¬ÇÒÐèÇóÁ¿g£¨¦È£©µÄº¯Êý¹ØÏµÊ½Îªg£¨¦È£©=4sin6¦È+6¦È£¨µ¥Î»£ºÍò¼þ£©£¬ÊÔ̽¾¿ÊÇ·ñ´æÔÚijÖÖ¹æ¸ñµÄ½ðÊôÖ§¼ÜÔÚµ±µØÐèÇóÁ¿ÎªÁ㣿²¢ËµÃ÷ÀíÓÉ£®

·ÖÎö £¨¢ñ£©Èô¦È=$\frac{¦Ð}{4}$£¬ÓÉÕýÏÒ¶¨ÀíµÃAC£¬¼´¿ÉÇóABµÄ³¤£»
£¨¢ò£©ÓÉÓàÏÒ¶¨ÀíµÃBDµÄ³¤f£¨¦È£©£¬ÀûÓÃÈý½Çº¯ÊýµÄÐÔÖÊ£¬¼´¿ÉÇóf£¨¦È£©µÄ×îСֵ£»
£¨¢ó£©Éèx=6¦È£¬x¡Ê£¨$\frac{2¦Ð}{3}$£¬2¦Ð£©£¬Áîh£¨x£©=4sinx+x£¬ÎÊÌâת»¯ÎªÔÚ£¨$\frac{2¦Ð}{3}$£¬2¦Ð£©ÊÇ·ñ´æÔÚxµÄÖµ£¬Ê¹ÊÇh£¨x£©=0£¬·ÖÀàÌÖÂۿɵýáÂÛ£®

½â´ð ½â£º£¨¢ñ£©ÔÚ¡÷ACDÖУ¬ÒÑÖªAD=6£¬¡ÏACD=$\frac{2¦Ð}{3}$£¬¡ÏADC=$\frac{¦Ð}{3}$-¦È£¬
ÓÉÕýÏÒ¶¨ÀíµÃ£º$\frac{AC}{sin£¨\frac{¦Ð}{3}-¦È£©}=\frac{AD}{sin\frac{2¦Ð}{3}}$£¬
¹ÊAC=4$\sqrt{3}$sin£¨$\frac{¦Ð}{3}$-¦È£©£®¡­£¨2·Ö£©
µ±¦È=$\frac{¦Ð}{4}$ʱ£¬AC=4$\sqrt{3}$sin£¨$\frac{¦Ð}{3}$-$\frac{¦Ð}{4}$£©=4$\sqrt{3}$•$\frac{\sqrt{6}-\sqrt{2}}{4}$=3$\sqrt{2}$-$\sqrt{6}$
¹ÊABµÄ³¤Îª6$\sqrt{2}$-2$\sqrt{6}$£®¡¡¡¡¡¡                         ¡­£¨4·Ö£©
£¨¢ò£©ÔÚ¡÷ABDÖУ¬ÒÑÖªAD=6£¬AB=8$\sqrt{3}$sin£¨$\frac{¦Ð}{3}$-¦È£©£¬¡ÏBAD=¦È£¬
ÓÉÓàÏÒ¶¨ÀíµÃ£ºBD2=AD2+AB2-2AD•AB•cos¦È¡¡¡¡¡¡                  ¡­£¨5·Ö£©
=36+[8$\sqrt{3}$sin£¨$\frac{¦Ð}{3}$-¦È£©]2-24¡Á4$\sqrt{3}$sin£¨$\frac{¦Ð}{3}$-¦È£©cos¦È
=60-48sin£¨2¦È+$\frac{¦Ð}{6}$£©¡¡                    ¡­£¨7·Ö£©
ÒòΪ¦È¡Ê£¨$\frac{¦Ð}{9}$£¬$\frac{¦Ð}{3}$£©£¬ËùÒÔ2¦È+$\frac{¦Ð}{6}$¡Ê£¨$\frac{7¦Ð}{18}$£¬$\frac{5¦Ð}{6}$£©£¬¼´sin£¨2¦È+$\frac{¦Ð}{6}$£©¡Ü1
ËùÒÔBD¡Ý$\sqrt{60-48}$=2$\sqrt{3}$£¬
ÔòBDµÄ×îСֵΪ2$\sqrt{3}$£¬´Ëʱsin£¨2¦È+$\frac{¦Ð}{6}$£©=1£¬¼´¦È=$\frac{¦Ð}{6}$£®¡­£¨9·Ö£©
£¨¢ó£©Éèx=6¦È£¬x¡Ê£¨$\frac{2¦Ð}{3}$£¬2¦Ð£©£¬Áîh£¨x£©=4sinx+x£¬
ÎÊÌâת»¯ÎªÔÚ£¨$\frac{2¦Ð}{3}$£¬2¦Ð£©ÊÇ·ñ´æÔÚxµÄÖµ£¬Ê¹ÊÇh£¨x£©=0£¬¡­£¨10·Ö£©
¢Ùµ±x¡Ê£¨4£¬2¦Ð£©Ê±£¬|sinx|¡Ü1£¬±ØÓÐh£¨x£©=4sinx+x£¾0£»
¢Úµ±x¡Ê£¨$\frac{2¦Ð}{3}$£¬4]ʱ£¬h¡ä£¨x£©=4cosx+1£¼0£¬ÔÚx¡Ê£¨$\frac{2¦Ð}{3}$£¬$\frac{4¦Ð}{3}$£©ºã³ÉÁ¢£¬h£¨x£©ÔÚÇø¼ä£¨$\frac{2¦Ð}{3}$£¬$\frac{4¦Ð}{3}$£©µÝ¼õ£¬
ÓÚÊÇh£¨x£©¡Ýh£¨4£©£¾h£¨$\frac{4¦Ð}{3}$£©=4sin$\frac{4¦Ð}{3}$+$\frac{4¦Ð}{3}$£¾-2$\sqrt{3}$+4£¾0
×ÛÉÏ£¬ÔÚ £¨$\frac{2¦Ð}{3}$£¬2¦Ð£©£¬h£¨x£©£¾0ºã³ÉÁ¢£¬¹Ê²»´æÔÚijÖÖ¹æ¸ñµÄ½ðÊôÖ§¼Ü£¬ÔÚµ±µØÐèÇóÁ¿ÎªÁ㣮¡­£¨13·Ö£©

µãÆÀ ±¾Ì⿼²é½âÈý½ÇÐεÄÔËÓ㬿¼²éÈý½Çº¯Êý֪ʶ£¬¿¼²é·ÖÀàÌÖÂÛµÄÊýѧ˼Ï룬¿¼²éѧÉú·ÖÎö½â¾öÎÊÌâµÄÄÜÁ¦£¬ÄѶȴó£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÒÑÖªº¯Êýf£¨x£©=2cos2x+$\sqrt{3}$sin2x-1£®
£¨1£©½«º¯Êýf£¨x£©»¯ÎªAsin£¨¦Øx+¦Õ£©µÄÐÎʽ£»
£¨2£©Çóº¯ÊýµÄ×î´óÖµ¼°×îСÕýÖÜÆÚ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®ÒÑÖªÔ²×¶ÇúÏßmx2+y2=1µÄÀëÐÄÂÊΪ$\sqrt{2}$£¬ÔòʵÊýmµÄֵΪ£¨¡¡¡¡£©
A£®-1B£®-2C£®-3D£®1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®Èô¾­¹ýµãP£¨-3£¬0£©µÄÖ±ÏßlÓëÔ²M£ºx2+y2+4x-2y+3=0ÏàÇУ¬ÔòÔ²MµÄÔ²ÐÄ×ø±êÊÇ£¨-2£¬1£©£»°ë¾¶Îª$\sqrt{2}$£»ÇÐÏßÔÚyÖáÉϵĽؾàÊÇ-3£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®ÉèÆ½Ãæ¦ÁÓëÆ½Ãæ¦ÂÏཻÓÚÖ±Ïßm£¬Ö±Ïßl1ÔÚÆ½Ãæ¦ÁÄÚ£¬Ö±Ïßl2ÔÚÆ½Ãæ¦ÂÄÚ£¬ÇÒl2¡Ím£¬Ôò¡°l1¡Íl2¡±ÊÇ¡°¦Á¡Í¦Â¡±µÄ£¨¡¡¡¡£©
A£®³ä·Ö²»±ØÒªÌõ¼þB£®±ØÒª²»³ä·ÖÌõ¼þ
C£®³ä·Ö±ØÒªÌõ¼þD£®¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®ÔÚ¡÷ABCÖУ¬¡ÏABC=30¡ã£¬AB=$\sqrt{3}$£¬BC±ßÉϵÄÖÐÏßAD=1£¬ÔòACµÄ³¤¶ÈΪ£¨¡¡¡¡£©
A£®1»ò$\sqrt{7}$B£®$\sqrt{7}$C£®$\sqrt{3}$D£®1»ò$\sqrt{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®ÒÑÖªÊýÁÐ{an}Êǹ«±È´óÓÚ1µÄµÈ±ÈÊýÁУ¬ÆäǰnÏîºÍΪSn£¬ÇÒa1£¬a3ÊÇ·½³Ìx2-5x+4=0µÄÁ½¸ù£¬ÔòS3=7£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®Ä³Ð£¼Æ»®×éÖ¯¸ßÒ»Äê¼¶Ëĸö°à¿ªÕ¹ÑÐѧÂÃÐл£¬³õÑ¡ÁËA£¬B£¬C£¬DËÄÌõ²»Í¬µÄÑÐѧÏß·£¬Ã¿¸ö°à¼¶Ö»ÄÜÔÚÕâËÄÌõÏß·ÖÐÑ¡ÔñÆäÖеÄÒ»Ìõ£¬ÇÒͬһÏß·×î¶àÖ»ÄÜÓÐÁ½¸ö°à¼¶Ñ¡Ôñ£¬Ôò²»Í¬µÄÑ¡Ôñ·½°¸ÓУ¨¡¡¡¡£©
A£®240ÖÖB£®204ÖÖC£®188ÖÖD£®96ÖÖ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÒÑÖªº¯Êýf£¨x£©=lnx-x-lna£¨x£¾0£©£¬ÆäÖÐa£¾0
£¨1£©Çóº¯Êýh£¨x£©=f£¨x£©+$\frac{1}{2}{x^2}$-ax+£¨a-1£©lnxµÄµ¥µ÷µÝÔöÇø¼ä£»
£¨2£©Èôº¯Êýf£¨x£©ÓÐÁ½¸öÁãµãx1£¬x2£¬ÇÒx1£¼x2£¬ÇóʵÊýaµÄȡֵ·¶Î§£¬²¢Ö¤Ã÷$\frac{x_2}{x_1}$ËæaµÄÔö´ó¶ø¼õС£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸