精英家教网 > 高中数学 > 题目详情
14.已知函数f(x)=ax+xlnx(a∈R)
(1)当a=2时,求函数f(x)的单调区间.
(2)当a=1且k∈Z时,不等式k(x-1)<f(x)在x∈(1,+∞)上恒成立,求k的最大值.

分析 (1)求出函数f(x)的导数,解关于导函数的不等式,求出函数的单调区间即可;
(2)问题转化为k<$\frac{x+xlnx}{x-1}$对任意x>1恒成立,令g(x)=$\frac{x+xlnx}{x-1}$,根据函数的单调性求出k的最大值即可.

解答 解:(1)∵a=2,∴f(x)=2x+xlnx,定义域为(0,+∞),
∴f′(x)=3+lnx,由f′(x)>0得到x>e-3,由f′(x)<0得到x<e-3
∴函数f(x)=2x+xlnx的增区间为(e-3,+∞),减区间为(0,e-3).
(2)当x>1时,x-1>0,故不等式k(x-1)<f(x)?k<$\frac{f(x)}{x-1}$,
即k<$\frac{x+xlnx}{x-1}$对任意x>1恒成立.
令g(x)=$\frac{x+xlnx}{x-1}$,则g′(x)=$\frac{x-lnx-2}{{(x-1)}^{2}}$,
令h(x)=x-lnx-2(x>1),
则h′(x)=1-$\frac{1}{x}$=$\frac{x-1}{x}$>0⇒h(x)在(1,+∞)上单增.
∵h(3)=1-ln3<0,h(4)=2-ln4>0,
∴存在x0∈(3,4)使h(x0)=0,
即当1<x<x0时,h(x)<0,即g′(x)<0,
当x>x0时,h(x)>0,即g′(x)>0,
∴g(x)在(1,x0)上单减,在(x0,+∞)上单增.
令h(x0)=x0-lnx0-2=0,即lnx0=x0-2,
g(x)min=g(x0)=$\frac{{x}_{0}(1+l{nx}_{0})}{{x}_{0}-1}$=$\frac{{x}_{0}(1{+x}_{0}-2)}{{x}_{0}-1}$=x0∈(3,4),
∴k<g(x)min=x0且k∈Z,
即kmax=3.

点评 本题考查了函数的单调性、最值问题,考查导数的应用以及函数恒成立问题,考查导数的应用,是一道综合题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.某中学对高三年级进行身高统计,测量随机抽取的20名学生的身高,其频率分布直方图如图(单位:cm)
(1)求a的值
(2)根据频率分布直方图,求出这20名学生身高中位数的估计值和平均数的估计值.
(3)在身高为140-160的学生中任选2个,求至少有一人的身高在150-160之间的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知在三棱锥P-ABC中,VP-ABC=$\frac{4\sqrt{3}}{3}$,∠APC=$\frac{π}{4}$,∠BPC=$\frac{π}{3}$,PA⊥AC,PB⊥BC,且平面PAC⊥平面PBC,那么三棱锥P-ABC外接球的体积为$\frac{32π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.圆柱的轴截面是正方形,且轴截面面积是5,则它的侧面积是(  )
A.πB.C.10πD.20π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列函数中,满足“f(x+y)=f(x)f(y)”的单调递增函数是(  )
A.f(x)=x3B.f(x)=x${\;}^{\frac{1}{2}}$C.f(x)=3xD.f(x)=($\frac{1}{2}$)x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=$\left\{\begin{array}{l}(3a-2)x+6a-1(x<1)\\{a^x}(x≥1)\end{array}\right.$单调递减,那么实数a的取值范围是(  )
A.(0,1)B.(0,$\frac{2}{3}$)C.[$\frac{3}{8}$,$\frac{2}{3}$)D.[$\frac{3}{8}$,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=$\left\{\begin{array}{l}{{e}^{x}-1,x>0}\\{\frac{3}{2}x+1,x≤0}\end{array}\right.$若m<n,且f(m)=f(n),则n-m的取值范围是(  )
A.[ln2,ln$\frac{3}{2}$+$\frac{1}{3}$]B.(ln2,ln$\frac{3}{2}$+$\frac{1}{3}$)C.($\frac{2}{3}$,ln2]D.($\frac{2}{3}$,ln$\frac{3}{2}$+$\frac{1}{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若4x=9y=6,则$\frac{1}{x}+\frac{1}{y}$=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知f(x)是偶函数,它在[0,+∞)上是减函数,若f(lgx)>f(1),则x的取值范围是(  )
A.$({\frac{1}{10},1})$B.$({\frac{1}{10},10})$C.$({0,\frac{1}{10}})∪({1,+∞})$D.(0,1)∪(10,+∞)

查看答案和解析>>

同步练习册答案