精英家教网 > 高中数学 > 题目详情
4.已知f(x)是偶函数,它在[0,+∞)上是减函数,若f(lgx)>f(1),则x的取值范围是(  )
A.$({\frac{1}{10},1})$B.$({\frac{1}{10},10})$C.$({0,\frac{1}{10}})∪({1,+∞})$D.(0,1)∪(10,+∞)

分析 由题意可得|lgx|<1,即-1<lgx<1,由此求得x的范围.

解答 解:f(x)是偶函数,它在[0,+∞)上是减函数,则它在(-∞,0)上是增函数,
若f(lgx)>f(1),则|lgx|<1,即-1<lgx<1,求得$\frac{1}{10}$<x<10,
故选:B.

点评 本题主要考查函数的单调性和奇偶性的综合应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=ax+xlnx(a∈R)
(1)当a=2时,求函数f(x)的单调区间.
(2)当a=1且k∈Z时,不等式k(x-1)<f(x)在x∈(1,+∞)上恒成立,求k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某中学组织了一次高二文科学生数学学业水平模拟测试,学校从测试合格的男、女生中各随机抽取100人的成绩进行统计分析,分别制成了如图所示的男生和女生数学成绩的频率分布直方图.

(Ⅰ)若所得分数大于等于80分认定为优秀,求男、女生优秀人数各有多少人?
(Ⅱ)在(Ⅰ)中的优秀学生中用分层抽样的方法抽取5人,从这5人中任意选取2人,求至少有一名男生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.衡州市临枣中学高二某小组随机调查芙蓉社区160个人,以研究这一社区居民在20:00-22:00时间段的休闲方式与性别的关系,得到下面的数据表:
休闲方式
性别
看电视看书合计
20100120
202040
合计40120160
下面临界值表:
P(K2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828
${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}},n=a+b+c+d$
(Ⅰ)将此样本的频率估计为总体的概率,随机调查3名在该社区的男性,设调查的3人在这一时间段以看书为休闲方式的人数为随机变量X,求X的分别列和期望;
(Ⅱ)根据以上数据,能否有99%的把握认为“在20:00-22:00时间段的休闲方式与性别有关系”?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若${(x+2)^2}+\frac{y^2}{4}=1$,则x2+y2的取值范围是[1,$\frac{28}{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.给出下列结论:①$\root{4}{(-2)^{4}}$=±2;②y=x2+1,x∈[-1,2],y的值域是[2,5];③幂函数图象一定不过第四象限;④函数f(x)=ax+1-2(a>0,a≠1)的图象过定点(-1,-1);⑤若lna<1成立,则a的取值范围是(-∞,e).其中正确的序号是(  )
A.①②B.③④C.①④D.③④⑤

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,已知长方形ABCD中,AB=2AD,M为DC的中点,将△ADM沿AM折起,使得平面ADM⊥平面ABCM.
(1)求证:AD⊥BM;
(2)若点E是线段DB上的中点,四棱锥D-ABCM的体积为V,求三棱锥E-ADM的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设集合$A=\left\{{x\left|{\frac{2x+1}{x-2}≤0}\right.}\right\}$,B={x|x<1},则A∪B=(  )
A.$[{-\frac{1}{2},1})$B.(-1,1)∪(1,2)C.(-∞,2)D.$[{-\frac{1}{2},2})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图的程序框图,如果输入三个数a,b,c,(a2+b2≠0)要求判断直线ax+by+c=0与单位圆的位置关系,那么在空白的判断框中,应该填写下面四个选项中的(  )
A.c=0?B.b=0?C.a=0?D.ab=0?

查看答案和解析>>

同步练习册答案