精英家教网 > 高中数学 > 题目详情
9.给出下列结论:①$\root{4}{(-2)^{4}}$=±2;②y=x2+1,x∈[-1,2],y的值域是[2,5];③幂函数图象一定不过第四象限;④函数f(x)=ax+1-2(a>0,a≠1)的图象过定点(-1,-1);⑤若lna<1成立,则a的取值范围是(-∞,e).其中正确的序号是(  )
A.①②B.③④C.①④D.③④⑤

分析 由根式的化简判断①,根据二次函数的性质判断②,由幂函数的性质判断③,由a0=1和指数函数的判断④,由对数函数的性质判断⑤.

解答 解::①$\root{4}{(-2)^{4}}$=|-2|=2,①不正确;
②y=x2+1,x∈[-1,2],y的值域是[1,5],②不正确;
③由幂函数知:幂函数图象一定不过第四象限,③正确;
④令x+1=0得x=-1,且y=-1,即f(x)=ax+1-2的图象过定点(-1,-1),④正确;
⑤由lna<1得0<a<e,即a的取值范围是(0,e),⑤不正确,
正确的命题是③④,
故选:B.

点评 本题考查基本初等函数的图象与性质,以及根式的化简的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=$\left\{\begin{array}{l}(3a-2)x+6a-1(x<1)\\{a^x}(x≥1)\end{array}\right.$单调递减,那么实数a的取值范围是(  )
A.(0,1)B.(0,$\frac{2}{3}$)C.[$\frac{3}{8}$,$\frac{2}{3}$)D.[$\frac{3}{8}$,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.甲、乙两家商场对同一种商品开展促销活动,对购买该商品的顾客两家商场的奖励方案如下:甲商场:顾客转动如图所示圆盘,当指针指向阴影部分(图中两个阴影部分均为扇形,且每个扇形圆心角均为$\frac{π}{4}$,边界忽略不计)即为中奖.乙商场:从装有2个白球、2个蓝球和2个红球的盒子中一次性摸出1球(这些球除颜色外完全相同),它是红球的概率是$\frac{1}{3}$,若从盒子中一次性摸出2球,且摸到的是2个相同颜色的球,即为中奖.
(Ⅰ)求实数a的值;
(Ⅱ)试问:购买该商品的顾客在哪家商场中奖的可能性大?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.下列四个函数中偶函数的序号为①④
①$f(x)=\root{3}{x^2}+1$
②$f(x)=x+\frac{1}{x}$
③$f(x)=\sqrt{1+x}-\sqrt{1-x}$
④f(x)=x2+x-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知f(x)是偶函数,它在[0,+∞)上是减函数,若f(lgx)>f(1),则x的取值范围是(  )
A.$({\frac{1}{10},1})$B.$({\frac{1}{10},10})$C.$({0,\frac{1}{10}})∪({1,+∞})$D.(0,1)∪(10,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,已知平行四边形ABCD的三个顶点的坐标为A(-1,4),B(-2,-1),C(2,3).
(1)求平行四边形ABCD的顶点D的坐标;
(2)在△ACD中,求CD边上的高线所在直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.等差数列{an}中,a2+a3=9,a4+a5=21,那么它的公差是(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知向量$|{\overrightarrow a}|=1,|{\overrightarrow b}|=2$,$\overrightarrow a⊥({\overrightarrow a+\overrightarrow b})$,则向量$\overrightarrow a$与$\overrightarrow b$的夹角为120°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,三棱柱ABC-A1B1C1中,D是AA1的中点,E为BC的中点.
(Ⅰ)求证:直线AE∥平面BC1D;
(Ⅱ)若三棱柱ABC-A1B1C1是正三棱柱,AB=2,AA1=4,求点E到平面BC1D的距离.

查看答案和解析>>

同步练习册答案