6£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©¾­¹ýµã£¨$\sqrt{3}$£¬$\frac{1}{2}$£©£¬ÀëÐÄÂÊΪ$\frac{\sqrt{3}}{2}$£¬Æä×ó¡¢ÓÒ¶¥µã·Ö±ðΪA£¬B£®Ö±Ïßl1£ºx=-2£¬Ö±Ïßl2£ºy=2£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÉèµãPÊÇÍÖÔ²CÉÏÔÚxÖáÉÏ·½µÄÒ»¸ö¶¯µã£¬Ö±ÏßAPÓëÖ±Ïßl2½»ÓÚµãM£¬Ö±ÏßBPÓëÖ±Ïßl1½»ÓÚµãN£¬ÇóÖ±ÏßMNµÄбÂʵÄȡֵ·¶Î§£®

·ÖÎö £¨1£©ÁªÁ¢$\left\{\begin{array}{l}{\frac{c}{a}=\frac{\sqrt{3}}{2}}\\{\frac{3}{{a}^{2}}+\frac{1}{4{b}^{2}}=1}\\{{a}^{2}={b}^{2}+{c}^{2}}\end{array}\right.$£¬½â³öa£¬b£¬c¼´¿ÉµÃ³ö£®
£¨2£©ÉèP£¨x0£¬y0£©£¬Ôò${x}_{0}^{2}+4{y}_{0}^{2}=4$£®¿ÉµÃkAP•kBP=-$\frac{1}{4}$£®ÉèkAP=k£¬¿ÉµÃkBP=-$\frac{1}{4k}$£®Ö±ÏßAPµÄ·½³ÌΪ£ºy=k£¨x+2£©£¬¿ÉµÃM$£¨\frac{2-2k}{k}£¬2£©$£»Í¬Àí¿ÉµÃ£ºN$£¨-2£¬\frac{1}{k}£©$£¬¼´¿ÉµÃ³ökMN£®

½â´ð ½â£º£¨1£©ÁªÁ¢$\left\{\begin{array}{l}{\frac{c}{a}=\frac{\sqrt{3}}{2}}\\{\frac{3}{{a}^{2}}+\frac{1}{4{b}^{2}}=1}\\{{a}^{2}={b}^{2}+{c}^{2}}\end{array}\right.$£¬½âµÃa=2£¬b=1£¬c=$\sqrt{3}$£¬
¡àÍÖÔ²CµÄ·½³ÌΪ$\frac{{x}^{2}}{4}+{y}^{2}=1$£®
£¨2£©ÉèP£¨x0£¬y0£©£¬Ôò${x}_{0}^{2}+4{y}_{0}^{2}=4$£®
kAP•kBP=$\frac{{y}_{0}}{{x}_{0}+2}$•$\frac{{y}_{0}}{{x}_{0}-2}$=$\frac{{y}_{0}^{2}}{{x}_{0}^{2}-4}$=-$\frac{1}{4}$£®
ÉèkAP=k£¬ÔòkBP=-$\frac{1}{4k}$£®
Ö±ÏßAPµÄ·½³ÌΪ£ºy=k£¨x+2£©£¬¡àM$£¨\frac{2-2k}{k}£¬2£©$£®
Ö±ÏßBPµÄ·½³ÌΪ£ºy=$-\frac{1}{4k}$£¨x-2£©£¬¡àN$£¨-2£¬\frac{1}{k}£©$£®
¡àkMN=$\frac{2-\frac{1}{k}}{\frac{2-2k}{k}+2}$=k-$\frac{1}{2}$£¬
¡ßk£¾0£¬
¡àkMN=k-$\frac{1}{2}$$£¾-\frac{1}{2}$£®
¡àÖ±ÏßMNµÄбÂʵÄȡֵ·¶Î§ÊÇ$£¨-\frac{1}{2}£¬+¡Þ£©$£®

µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²µÄ±ê×¼·½³Ì¼°ÆäÐÔÖÊ¡¢Ð±ÂʼÆË㹫ʽ¡¢º¯ÊýµÄµ¥µ÷ÐÔ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®Ä³Ð£ÓиßÖÐÉú900Ãû£¬ÆäÖиßÒ»Äê¼¶300ÈË£¬¸ß¶þÄê¼¶200ÈË£¬¸ßÈýÄê¼¶400ÈË£¬Ó÷ֲã³éÑùµÄ·½·¨³éȡһ¸öÈÝÁ¿Îª45µÄÑù±¾£¬Ôò¸ßÈýÄê¼¶Ó¦³éÈ¡£¨¡¡¡¡£©
A£®25ÈËB£®15 ÈËC£®30 ÈËD£®20ÈË

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®ÒÑÖªa£¬b¡ÊRÇÒ$\left\{\begin{array}{l}{£¨a+1£©^{5}+2015£¨a+1£©=-1}\\{£¨b+1£©^{5}+2015£¨b+1£©=1}\end{array}\right.$£¬Ôòa+b=-2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÇóµãP£¨m£¬n£©¹Ø¶¡Ö±Ïßx-y+b=0¶Ô³ÆµÄµãµÄ×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÈýÀâ×¶A-BCDÖУ¬EÊÇBCµÄÖе㣬AB=AD£¬BD¡ÍDC£¬ÇóÖ¤£ºAE¡ÍBD£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÒÑÖªº¯Êýf£¨x£©=$\sqrt{3}$sin¦Øx•cos¦Øx-cos2¦Øx£¨¦Ø£¾0£©µÄ×îСÕýÖÜÆÚT=¦Ð£®
£¨1£©Çóf£¨x£©µÄµ¥µ÷µÝÔöÇø¼ä£»
£¨2£©ÔÚ¡÷ABCÖУ¬½ÇA£¬B£¬CËù¶ÔÓ¦µÄ±ß·Ö±ðΪa£¬b£¬c£¬Èô£¨2a-c£©cosB=bcosC£¬a+c=4£¬b=$\sqrt{7}$£¬Çó¡÷ABCµÄÃæ»ýS£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÒÑÖªº¯Êýf£¨x£©=2cos£¨¦Øx+¦Õ£©+1£¨x¡ÊR£¬¦Ø£¾0£¬-$\frac{¦Ð}{2}$£¼¦Õ£¼0£©µÄͼÏóÏàÁÚÁ½Ìõ¶Ô³ÆÖáÖ®¼äµÄ¾àÀëΪ$\frac{¦Ð}{2}$£¬ÇÒf£¨0£©=2£®
£¨I£©Çó¦ØºÍ¦ÕµÄÖµ£»
£¨¢ò£©Çóº¯Êýf£¨x£©µÄ×î´óÖµ¼°ÏàÓ¦µÄxµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®¶ÔÓÚº¯Êýf£¨x£©£¬Èô´æÔÚx0¡ÊR£¬Ê¹µÃf£¨x0£©=x0³ÉÁ¢£¬Ôò³Æx0Ϊf£¨x£©µÄÒ»¸ö¶¯µã£®É躯Êýf£¨x£©=x2+ax+b£®
£¨1£©µ±a=-1£¬b=-3ʱ£¬Çóf£¨x£©µÄ²»¶¯µã£»
£¨2£©Èôf£¨x£©ÓÐÁ½¸öÏàÒìµÄ²»¶¯µãx1£¬x2£®
¢Ùµ±-2£¼x1£¼0£¼x2£¼1ʱ£¬Çó|3a+b-3|µÄȡֵ·¶Î§£»
¢ÚÈô|x1|£¼2ÇÒ|x1-x2|=2£¬ÇóʵÊýbµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®º¯Êýy=1+2xÔÚÇø¼äx¡Ê[0£¬1]ÉϵÄÖµÓòΪ£¨¡¡¡¡£©
A£®[1£¬+¡Þ£©B£®£¨-¡Þ£¬2]C£®[2£¬3]D£®[1£¬3]

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸