精英家教网 > 高中数学 > 题目详情
14.求点P(m,n)关丁直线x-y+b=0对称的点的坐标.

分析 设出对称点的坐标列出方程组求解即可.

解答 解:点P(m,n)关于直线x-y+b=0对称的点为(x,y).
可得:$\left\{\begin{array}{l}\frac{n-y}{m-x}=-1\\ \frac{x+m}{2}-\frac{y+n}{2}+b=0\end{array}\right.$,即:$\left\{\begin{array}{l}-x-y+n+m=0\\ x-y+m-n+2b=0\end{array}\right.$.
解得:$\left\{\begin{array}{l}x=n-b\\ y=m+b\end{array}\right.$,
点P(m,n)关于直线x-y+b=0对称的点的坐标:(n-b,m+b).

点评 本题考查了点关于直线的对称点的求法,对称知识的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.计算
(1)log2$\sqrt{\frac{7}{12}}$+log26-$\frac{1}{2}$log228
(2)log${\;}_{\sqrt{2}}$2+log927+$\frac{1}{4}$log4$\frac{1}{16}$+2${\;}^{1+lo{g}_{2}9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知四边形OABC为菱形,其中O为原点,菱形的中心为E(5,2),A点坐标为(3,7),求菱形的其余顶点B,C的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.两直线x-1=0与y+3=0的位置关系垂直(填“平行”、“垂直”、“重合”、“相交但不垂直)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.己知函数f(x)=k3-x-3x是定义域为R的奇函数.
(1)求实数k值;
(2)试判断f(x)单调性,并求使不等式f(x2+tx)+f(4-x)>0对任意x∈(1,2)都成立的实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.$cos\frac{2π}{5}cos\frac{4π}{5}$的值为.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)经过点($\sqrt{3}$,$\frac{1}{2}$),离心率为$\frac{\sqrt{3}}{2}$,其左、右顶点分别为A,B.直线l1:x=-2,直线l2:y=2.
(1)求椭圆C的方程;
(2)设点P是椭圆C上在x轴上方的一个动点,直线AP与直线l2交于点M,直线BP与直线l1交于点N,求直线MN的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.不等式$\left\{\begin{array}{l}{3x-2y-2>0}\\{x+4y+4>0}\\{2x+y-6<0}\end{array}\right.$的整数解的个数为(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若不等式组$\left\{\begin{array}{l}x-y≥0\\ x+2y≤2\\ y≥0\\ x+y≤a\end{array}\right.$表示的平面区域是一个三角形,则实数a∈∈$({0,\frac{4}{3}}]∪[{2,+∞})$.

查看答案和解析>>

同步练习册答案