精英家教网 > 高中数学 > 题目详情
4.如图在直三棱柱ABC-A1B1C1中,∠ACB=90°,AA1=BC=2AC=2,D为AA1的中点.
(1)求证:CD⊥B1C1
(2)求三棱锥C1-B1CD的体积.

分析 (1)推导出BC⊥CC1,AC⊥BC,由此能证明CD⊥B1C1
(2)求出D到平面B1C1C的距离d=AC=1,三棱锥C1-B1CD的体积${V}_{{C}_{1}-{B}_{1}CD}={V}_{D-{B}_{1}{C}_{1}C}$,由此能求出结果.

解答 证明:(1)∵直三棱柱ABC-A1B1C1中,CC1⊥ABC,BC?平面ABC,
∴BC⊥CC1
∵∠ACB=90°,∴AC⊥BC,
∵AC∩CC1=C,∴BC⊥平面ACC1A1
∵B1C1∥BC,∴B1C1⊥平面ACC1A1
∵CD?平面ACC1A1,∴CD⊥B1C1
解:(2)∵在直三棱柱ABC-A1B1C1中,∠ACB=90°,
AA1=BC=2AC=2,D为AA1的中点.
∴D到平面B1C1C的距离d=AC=1,
∴三棱锥C1-B1CD的体积:
${V}_{{C}_{1}-{B}_{1}CD}={V}_{D-{B}_{1}{C}_{1}C}$=$\frac{1}{3}×{S}_{△{B}_{1}{C}_{1}C}×AC$=$\frac{1}{3}×(\frac{1}{2}×2×2)×1$=$\frac{2}{3}$.

点评 本题考查线线垂直的证明,考查三棱锥的体积的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知极坐标系的极点与直角坐标系的坐标原点重合、极轴与x轴的正半轴重合,若直线l的极坐标方程为ρsin(θ-$\frac{π}{6}$)=$\frac{\sqrt{3}-1}{2}$.
(1)写出直线l的参数方程;
(2)设直线l与圆ρ=2相交于A,B两点,求点P(1,1)到A,B两点的距离之积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知圆O:x2+y2=4,点P为直线l:x=4上的动点.
(1)若从点P作圆O的切线,点P到切点的距离为$2\sqrt{3}$,求点P的坐标以及两条切线所夹劣弧长;
(2)若A(-2,0),B(2,0),直线PA,PB与圆O的另一个交点分别为M,N,求证:直线MN经过定点(1,0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知定点A1(-3,0),A2(3,0),直线A1M,A2M相交于点M,且它们的斜率之积是-$\frac{5}{9}$.
(Ⅰ)求点M的轨迹G的方程;
(Ⅱ)若点N的坐标为(-2,$\frac{5}{3}$),斜率为-$\frac{2}{3}$的直线l与曲线G相交于P、Q两点,判断直线NP、NQ、y轴所围成的三角形是否为等腰三角形,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.某校周四下午第五、六两节是选修课时间,现有甲、乙、丙三位教师可开课.已知甲、乙教师各自最多可以开设两节课,丙教师最多可以开设一节课.现要求第五、六两节课中每节课恰有两位教师开课(不必考虑教师所开课的班级和内容),则丙教师不开课的概率为(  )
A.$\frac{1}{3}$B.$\frac{1}{5}$C.$\frac{1}{7}$D.$\frac{1}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在平面直角坐标系中,圆M的方程(x-2)2+y2=1,若直线mx+y+2=0上至少存在一点P,使得以P为圆心,1为半径的圆与圆M有公共点,则m的取值范围是(  )
A.m≤0B.m≤-1C.m≥2D.m≤-$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.关于x的不等式|2x-m|≤1的整数解有且仅有一个值为3(m为整数).
(Ⅰ)求整数m的值;
(Ⅱ)已知a,b,c∈R,若4a4+4b4+4c4=m,求a2+b2+c2的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知直线l:4x+3y+15=0,半径为3的⊙C与l相切,圆心C在x轴上且在直线l的右上方.
(Ⅰ)求圆C的方程;
(Ⅱ)如图过点M(1,0)的直线与圆C交于A、B两点(A在x轴上方),问在x轴正半轴上是否存在顶点N,使得x轴评分∠ANB?若存在,请求出点N的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.为研究数学成绩是否对物理成绩有影响,某校数学社团对该校1501班上学期期末成绩进行了统计,结果显示在数学成绩及格的30人中,有16人的物理成绩及格,在数学成绩不及格的20人中,有5人的物理成绩及格.
(1)根据以上资料画出数学成绩与物理成绩的列联表;
(2)能否在犯错误的概率不超过0.050的前提下认为数学成绩与物理成绩有关系?
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$;n=a+b+c+d
 P(K2≥k0 0.10 0.050.010 
 k0 2.7063.841  6.635

查看答案和解析>>

同步练习册答案