精英家教网 > 高中数学 > 题目详情
13.已知直线l:4x+3y+15=0,半径为3的⊙C与l相切,圆心C在x轴上且在直线l的右上方.
(Ⅰ)求圆C的方程;
(Ⅱ)如图过点M(1,0)的直线与圆C交于A、B两点(A在x轴上方),问在x轴正半轴上是否存在顶点N,使得x轴评分∠ANB?若存在,请求出点N的坐标;若不存在,请说明理由.

分析 (1)设出圆心C坐标,根据直线l与圆C相切,得到圆心到直线l的距离d=r,确定出圆心C坐标,即可得出圆C方程;
(2)当直线AB⊥x轴,则x轴平分∠ANB,当直线AB斜率存在时,设直线AB方程为y=k(x-1),联立圆与直线方程,消去y得到关于x的一元二次方程,利用韦达定理表示出两根之和与两根之积,由若x轴平分∠ANB,则kAN=-kBN,求出t的值,确定出此时N坐标即可.

解答 解:(1)设圆心C(a,0)(a>-$\frac{15}{4}$),
∵直线l:4x+3y+15=0,半径为3的圆C与l相切,
∴d=r,即$\frac{|4a+15|}{5}$=3,
解得:a=0或a=-$\frac{15}{2}$(舍去),
则圆C方程为x2+y2=9;
(2)当直线AB⊥x轴,则x轴平分∠ANB,
若x轴平分∠ANB,则kAN=-kBN,即$\frac{k({x}_{1}-1)}{{x}_{1}-t}$+$\frac{k({x}_{2}-1)}{{x}_{2}-t}$=0,
整理得:2x1x2-(t+1)(x1+x2)+2t=0,即$\frac{2({k}^{2}-9)}{{k}^{2}+1}$-$\frac{2{k}^{2}(t+1)}{{k}^{2}+1}$+2t=0,
解得:t=9,
当点N(0,0),能使得∠ANM=∠BNM总成立.

点评 此题考查了直线与圆的方程的应用,涉及的知识有:垂径定理,勾股定理,圆的标准方程,点到直线的距离公式,以及斜率的计算,熟练掌握定理及公式是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.三棱ABC-A1B1C1,A1A⊥底面ABC,且△ABC为正三角形,且,D为AC中点.
(1)求证:平面BC1D⊥平面AA1CC1
(2)若AA1=AB=2,求点A到面BC1D的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图在直三棱柱ABC-A1B1C1中,∠ACB=90°,AA1=BC=2AC=2,D为AA1的中点.
(1)求证:CD⊥B1C1
(2)求三棱锥C1-B1CD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在平面直角坐标系xOy中,曲线${C_1}:{(x-2)^2}+{(y-2)^2}=8$,曲线${C_2}:{x^2}+{y^2}={r^2}(0<r<4)$,以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,射线θ=α$(0<α<\frac{π}{2})$与曲线C1交于O,P两点,与曲线C2交于O,N两点,且|PN|最大值为$2\sqrt{2}$
(1)将曲线C1与曲线C2化成极坐标方程,并求r的值;
(2)射线$θ=α+\frac{π}{4}$与曲线C1交于O,Q两点,与曲线C2交于O,M两点,求四边形MNPQ面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知椭圆的中心在原点,离心率e=$\frac{1}{2}$,且它的一个焦点与抛物线x2=-4y的焦点重合,则此椭圆的方程为(  )
A.$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$B.$\frac{{x}^{2}}{3}+\frac{{y}^{2}}{4}=1$C.${x}^{2}+\frac{{y}^{2}}{2}=1$D.$\frac{{x}^{2}}{6}+\frac{{y}^{2}}{8}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系.在极坐标系中,设点P为曲线C1:ρ=2cosθ上的任意一点,点Q在射线OP上,且满足|OP|•|OQ|=6,记Q点的轨迹为C2
(1)求曲线C2的直角坐标方程;
(2)直线l:θ=$\frac{π}{3}$分别交C1与C2交于A,B两点,求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.若以O为极点,在极坐标系Ox中,曲线C1的极坐标方程为ρ=$\frac{{\sqrt{2}}}{{sin({θ+\frac{π}{4}})}}$;以极点O为原点,极轴为x轴的正半轴,取相同的单位长度,建立平面直角坐标系xOy,曲线C2为椭圆,且以C1与x轴的交点F为焦点,C2参数方程的横坐标表示为x=4cosα.
(1)求曲线C1的直角坐标方程和C2参数方程的纵坐标表达式;
(2)定点P为C1上θ=$\frac{π}{4}$的点,动点M在C2上,求|MP|+|MF|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在45°的二面角的一个半平面内有一点P,它到另一个半平面的距离等于1,则点P到二面角的棱的距离为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=-$\frac{1}{3}$x3+x2+ax在x=3取得极值,则f(x)的极大值为(  )
A.6B.5C.9D.-$\frac{5}{2}$

查看答案和解析>>

同步练习册答案