精英家教网 > 高中数学 > 题目详情
8.已知椭圆的中心在原点,离心率e=$\frac{1}{2}$,且它的一个焦点与抛物线x2=-4y的焦点重合,则此椭圆的方程为(  )
A.$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$B.$\frac{{x}^{2}}{3}+\frac{{y}^{2}}{4}=1$C.${x}^{2}+\frac{{y}^{2}}{2}=1$D.$\frac{{x}^{2}}{6}+\frac{{y}^{2}}{8}=1$

分析 抛物线x2=-4y的焦点为(0,-1),为椭圆的一个焦点.因此可设椭圆的标准方程为:$\frac{{y}^{2}}{{a}^{2}}+\frac{{x}^{2}}{{b}^{2}}$=1(a>b>0).则c=1,$\frac{c}{a}=\frac{1}{2}$,a2=b2+c2,联立解得即可得出.

解答 解:抛物线x2=-4y的焦点为(0,-1),为椭圆的一个焦点.
因此可设椭圆的标准方程为:$\frac{{y}^{2}}{{a}^{2}}+\frac{{x}^{2}}{{b}^{2}}$=1(a>b>0).
则c=1,$\frac{c}{a}=\frac{1}{2}$,a2=b2+c2
联立解得a=2,b2=3.
∴此椭圆的标准方程为:$\frac{{x}^{2}}{3}+\frac{{y}^{2}}{4}$=1.
故选;B.

点评 本题考查了椭圆与抛物线的标准方程及其性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.直线x-y-1=0与圆(x-1)2+(y-2)2=4相交于A、B两点,则弦AB的长为$2\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.某校周四下午第五、六两节是选修课时间,现有甲、乙、丙三位教师可开课.已知甲、乙教师各自最多可以开设两节课,丙教师最多可以开设一节课.现要求第五、六两节课中每节课恰有两位教师开课(不必考虑教师所开课的班级和内容),则丙教师不开课的概率为(  )
A.$\frac{1}{3}$B.$\frac{1}{5}$C.$\frac{1}{7}$D.$\frac{1}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.关于x的不等式|2x-m|≤1的整数解有且仅有一个值为3(m为整数).
(Ⅰ)求整数m的值;
(Ⅱ)已知a,b,c∈R,若4a4+4b4+4c4=m,求a2+b2+c2的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如图,已知O,A,B是平面内不共线的三点,且$\overrightarrow{OP}=x\overrightarrow{OA}+y\overrightarrow{OB}$,直线OA,OB,AB将平面区域分成7部分,若点P落在区域①中(含边界),则z=2x+y的最大值为(  )
A.不存在B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知直线l:4x+3y+15=0,半径为3的⊙C与l相切,圆心C在x轴上且在直线l的右上方.
(Ⅰ)求圆C的方程;
(Ⅱ)如图过点M(1,0)的直线与圆C交于A、B两点(A在x轴上方),问在x轴正半轴上是否存在顶点N,使得x轴评分∠ANB?若存在,请求出点N的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在一个棱长为4的正方体内,你认为最多放入的直径为1的球的个数为(  )
A.64B.65C.66D.67

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知点$F(0,\frac{1}{4})$是抛物线x2=2py(p>0)的焦点,设A(2,y0)是抛物线上的一点.
(1)求该抛物线在点A处的切线l的方程;
(2)求曲线C、直线l和x轴所围成的图形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=x3-6x2+12x+a(a∈R),则函数f(x)的极值点的个数为(  )
A.0B.1
C.2D.与实数a的取值有关

查看答案和解析>>

同步练习册答案