精英家教网 > 高中数学 > 题目详情
3.已知函数f(x)=-$\frac{1}{3}$x3+x2+ax在x=3取得极值,则f(x)的极大值为(  )
A.6B.5C.9D.-$\frac{5}{2}$

分析 求出函数的导数,利用极值点两次方程,求出a,然后判断函数的单调性,求解函数的极大值即可.

解答 解:f'(x)=-x2+2x+a,由题意知f'(3)=0,即-9+6+a=0,解得a=3.
∴$f(x)=-\frac{1}{3}{x^3}+{x^2}+3x$,f'(x)=-x2+2x+3,
由f'(x)=-x2+2x+3=0得x=-1,x=3,
∴函数f(x)在区间(-∞,-1)和(3,﹢∞)递减,
在区间(-1,3)递增.
f(x)的极大值f(3)=9.
故选:C.

点评 本题考查函数的导数的应用,函数的极值与单调性的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知直线l:4x+3y+15=0,半径为3的⊙C与l相切,圆心C在x轴上且在直线l的右上方.
(Ⅰ)求圆C的方程;
(Ⅱ)如图过点M(1,0)的直线与圆C交于A、B两点(A在x轴上方),问在x轴正半轴上是否存在顶点N,使得x轴评分∠ANB?若存在,请求出点N的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.为研究数学成绩是否对物理成绩有影响,某校数学社团对该校1501班上学期期末成绩进行了统计,结果显示在数学成绩及格的30人中,有16人的物理成绩及格,在数学成绩不及格的20人中,有5人的物理成绩及格.
(1)根据以上资料画出数学成绩与物理成绩的列联表;
(2)能否在犯错误的概率不超过0.050的前提下认为数学成绩与物理成绩有关系?
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$;n=a+b+c+d
 P(K2≥k0 0.10 0.050.010 
 k0 2.7063.841  6.635

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.与椭圆$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1共焦点,且过点(4,0)的椭圆的标准方程为$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{11}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=x3-6x2+12x+a(a∈R),则函数f(x)的极值点的个数为(  )
A.0B.1
C.2D.与实数a的取值有关

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若一个三棱锥的三视图如图所示,其中三个视图都是直角三角形,则该三棱锥外接球的体积为(  )
A.$\frac{24π}{3}$B.$\frac{4π}{3}$C.$\frac{2π}{3}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设M、N是抛物线C:y2=3x上任意两点,点E的坐标为(-λ,0)(λ≥0),若$\overrightarrow{EM}$•$\overrightarrow{EN}$的最小值为0,则λ=(  )
A.0B.$\frac{3}{2}$C.$\frac{3}{4}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设点A为曲线C:ρ=2cosθ在极轴Ox上方的一点,且0≤∠AOx≤$\frac{π}{4}$,以A为直角顶点,AO为一条直角边作等腰直角三角形OAB(B在A的右下方),求点B的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.某商场销售某种商品的经验表明,该商品每日的销售量y(单位:千克)与销售价格x(单位:元/千克)满足关系式y=$\frac{a}{x-4}$+10(x-7)2.其中3<x<7,a为常数.已知销售价格为6元/千克时,每日可售出该商品11千克.
(Ⅰ)求a的值;
(Ⅱ)若该商品的成本为4元/千克,试确定销售价格x(单位:元/千克)的值,使商场每日销售该商品所获得的利润最大.

查看答案和解析>>

同步练习册答案