精英家教网 > 高中数学 > 题目详情
已知数列{an}的前n项和Sn满足:Sn=
a
a-1
(an-1)(a为常数且a≠0,a≠1).
(1)求{an}的通项公式;
(2)设bn=
2Sn
an
+1,若数列{bn}为等比数列,求a的值;
(3)在满足条件(2)的情形下,设cn=2-(
1
1+an
+
1
1-an+1
),数列{cn}的前n项和Tn,求证:Tn
1
3
考点:数列的求和,等比关系的确定
专题:等差数列与等比数列
分析:(1)由Sn=
a
a-1
(an-1),(a为常数且a≠0,a≠1).可得当n≥2时,an=Sn-Sn-1,化为an=aan-1,利用等比数列的通项公式即可得出.
(2)bn=
2Sn
an
+1=
2a
a-1
(an-1)
an
+1=
2a
a-1
(1-
1
an
)
+1,由于数列{bn}为等比数列,可得
b
2
2
=b1b3
,解出即可.
(3)cn=2-(
1
1+an
+
1
1-an+1
)=2-(
1
1+
1
3n
+
1
1-
1
3n+1
)
=
1
3n+1
-
1
3n+1-1
1
3n
-
1
3n+1
.再利用“裂项求和”即可得出.
解答: (1)解:∵Sn=
a
a-1
(an-1),(a为常数且a≠0,a≠1).
∴当n≥2时,an=Sn-Sn-1=
a
a-1
[(an-1)-(an-1-1)]
=
a
a-1
(an-an-1)

化为an=aan-1
∴数列{an}是等比数列,
a1=
a
a-1
(a1-1)
,解得a1=a.
∴an=an
(2)解:bn=
2Sn
an
+1=
2a
a-1
(an-1)
an
+1=
2a
a-1
(1-
1
an
)
+1,
∵数列{bn}为等比数列,
b
2
2
=b1b3

[
2a
a-1
(1-
1
a2
)+1]2
=[
2a
a-1
(1-
1
a
)+1]
[
2a
a-1
(1-
1
a3
)+1]

化为
2a
a-1
(
1
a3
+
1
a
-
1
a2
)
(
2a
a-1
+1)
=0,
∴3a-1=0,
解得a=
1
3

(3)证明:cn=2-(
1
1+an
+
1
1-an+1
)=2-(
1
1+
1
3n
+
1
1-
1
3n+1
)
=
1
3n+1
-
1
3n+1-1
1
3n
-
1
3n+1

∴Tn(
1
3
-
1
32
)
+(
1
32
-
1
33
)
+…+(
1
3n
-
1
3n+1
)

=
1
3
-
1
3n+1
1
3
点评:本题考查了等比数列的通项公式及其性质、“裂项求和”、“放缩法”,考查了推理能力与计算能力,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若log2x∈[0,2],则函数y=(
1
2
)x2-4x+3
的值域为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线的方程y2=4x,过定点P(-2,1)且斜率为k的直线l与抛物线y2=4x相交于不同的两点.求斜率k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:两个非零向量
a
=(m-1,n-1),
b
=(m-3,n-3),且
a
b
的夹角是钝角或直角,则m+n的取值范围是(  )
A、(
2
,3
2
B、(2,6)
C、[
2
,3
2
]
D、[2,6]

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在平面直角坐标系中,正方形OABC的边长为1,E为AB的中点,若F为正方形内(含边界)任意一点,则
OE
OF
的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面向量
a
b
满足|
a
|=
3
,|
b
|=2,且(
a
-
b
)⊥
a
,则
a
b
的夹角为(  )
A、
π
6
B、
π
3
C、
3
D、
6

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=|ax+x2-xlna-t|-1(a>1)有三个零点,则t的值是(  )
A、2B、4C、8D、0

查看答案和解析>>

科目:高中数学 来源: 题型:

OA
=(t,1)(t∈Z),
OB
=(2,4)
,满足|
OA
|≤4,则△OAB为直角三角形的概率是(  )
A、
4
7
B、
3
7
C、
2
7
D、
1
7

查看答案和解析>>

科目:高中数学 来源: 题型:

若(x2+1)(x+1)8=a0+a1x+a2x2+…+a10x10,则a1+a2+…+a10的值为
 

查看答案和解析>>

同步练习册答案