精英家教网 > 高中数学 > 题目详情
13.已知x,y满足约束条件$\left\{\begin{array}{l}{x+y-2≥0}\\{x-2y+4≥0}\\{x-2≤0}\end{array}\right.$,则z=3x+y的最大值与最小值之差为7.

分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.

解答 解:由约束条件$\left\{\begin{array}{l}{x+y-2≥0}\\{x-2y+4≥0}\\{x-2≤0}\end{array}\right.$,作出可行域如图,
联立$\left\{\begin{array}{l}{x=2}\\{x-2y+4=0}\end{array}\right.$,解得A(2,3),$\left\{\begin{array}{l}{x+y-2=0}\\{x-2y+4=0}\end{array}\right.$
可得B(0,2)
化目标函数z=3x+y为y=-3x+z,
由图可知,当直线y=-3x+z过A时,直线在y轴上的截距最大,
z有最大值为9.
当直线y=-3x+z过B时,直线在y轴上的截距最小,
z有最小值为2.
则z=3x+y的最大值与最小值之差为:7.
故答案为:7.

点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.根据如表样本数据得到的回归方程为$\stackrel{∧}{y}$=bx+a,若a=5.4,则x每增加1个单位,y就(  )
x34567
y42.5-0.50.5-2
A.增加0.9个单位B.减少0.9个单位C.增加1个单位D.减少1个单位

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数f(x)=${log_{\frac{1}{2}}}({x^2}$-ax+a)在区间[2,+∞)上是减函数,则实数a的取值范围是{a|a<4}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列函数为奇函数的是(  )
A.y=x2+1B.y=x3-2xC.y=2x+1D.y=2x4+3x2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在△ABC中,$\overrightarrow{AD}=\frac{1}{4}\overrightarrow{AB\;},\;E$为BC边的中点,设$\overrightarrow{AB\;}$=$\overrightarrow a$,$\overrightarrow{AC}$=$\overrightarrow b$,若$\overrightarrow{DE\;}$=$x\overrightarrow a+y\overrightarrow b$,则x+y=$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数$f(x)=\left\{\begin{array}{l}{e^{x+3}},x<0\\ \sqrt{-{x^2}+2x},0≤x≤2\end{array}\right.$若g(x)=f(x)-kx-2k恰有两个两点,则实数k的取值范围为$({e^2},\frac{e^3}{2})∪[0,\frac{{\sqrt{2}}}{4})$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知f(x)是定义在R上的偶函数,当x≥0时,f(x)=x2+2x,若f(2-a2)>f(a2),则实数a的取值范围是(-1,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=$\sqrt{3+2x-{x}^{2}}$的定义域为A,集合B={x|x2-2mx+m2-9≤0}.
(1)若A∩B=[2,3],求实数m的值;
(2)若?x1∈A,?x2∈(CRB),使x2=x1,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=-x2-6x-3,g(x)=$\frac{{e}^{x}+ex}{ex}$,实数m,n满足m<n<0,若?x1∈[m,n],?x2∈(0,+∞),使得f(x1)=g(x2)成立,则n-m的最大值为(  )
A.4B.2$\sqrt{3}$C.4$\sqrt{3}$D.2$\sqrt{5}$

查看答案和解析>>

同步练习册答案