分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.
解答
解:由约束条件$\left\{\begin{array}{l}{x+y-2≥0}\\{x-2y+4≥0}\\{x-2≤0}\end{array}\right.$,作出可行域如图,
联立$\left\{\begin{array}{l}{x=2}\\{x-2y+4=0}\end{array}\right.$,解得A(2,3),$\left\{\begin{array}{l}{x+y-2=0}\\{x-2y+4=0}\end{array}\right.$
可得B(0,2)
化目标函数z=3x+y为y=-3x+z,
由图可知,当直线y=-3x+z过A时,直线在y轴上的截距最大,
z有最大值为9.
当直线y=-3x+z过B时,直线在y轴上的截距最小,
z有最小值为2.
则z=3x+y的最大值与最小值之差为:7.
故答案为:7.
点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.
科目:高中数学 来源: 题型:选择题
| x | 3 | 4 | 5 | 6 | 7 |
| y | 4 | 2.5 | -0.5 | 0.5 | -2 |
| A. | 增加0.9个单位 | B. | 减少0.9个单位 | C. | 增加1个单位 | D. | 减少1个单位 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 2$\sqrt{3}$ | C. | 4$\sqrt{3}$ | D. | 2$\sqrt{5}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com