精英家教网 > 高中数学 > 题目详情
不等式:-x2+4x+5<0的解集是
 
考点:一元二次不等式的解法
专题:不等式的解法及应用
分析:利用一元二次不等式的解法即可求出.
解答: 解:∵-x2+4x+5<0,
∴x2-4x-5>0,
∴(x-5)(x+1)>0,
∴x<-1,或x>5,
∴原不等式的解集为{x|x<-1或x>5}.
点评:熟练掌握一元二次不等式的解法是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知直线a,b,c,若a⊥c,b⊥c,则a与b的位置关系是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方体ABCD-A1B1C1D1的棱长为1,点M是面对角线A1B上的动点,则AM+MD1的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a1=1,当n≥2时,满足an-an-1+2an•an-1=0.
(Ⅰ)求证:数列{
1
an
}是等差数列,并求数列{an}的通项公式;
(Ⅱ)令bn=
an
2n+1
,数列{bn}的前n项和为Tn,求使得2Tn(2n+1)≤m(n2+3)对所有n∈N*都成立的实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1,F2分别是椭圆C:
x2
25
+
y2
16
=1的左、右焦点,P为椭圆C上一点,M是PF1的中点,|OM|=3,则点P到椭圆左焦点F1的距离|PF1|=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3x
 
 
x≥0
x2
 
 
x<0
,若f(x)≤9,则x的取值范围为(  )
A、(-∞,2]
B、[-2,3]
C、[-3,2]
D、[2,3]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x+
1
x

(1)求定义域;
(2)证明f(x)在[1,+∞)上是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=x+
e2
x
(x>0),若函数g(x)=f(x)-m有零点,则m的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)为R上的奇函数,且x>0时f(x)=-2x2+4x+1,则f(-1)=
 

查看答案和解析>>

同步练习册答案