精英家教网 > 高中数学 > 题目详情
如图,ABCD是正方形,O是该正方形的中心,P是平面ABCD外一点,PO⊥底面ABCD,E是PC的中点.求证:
(1)PA∥平面BDE;
(2)BD⊥平面PAC;
(3)若PA=AB=2,求二面角E-BD-C的大小.
考点:二面角的平面角及求法,直线与平面平行的判定,直线与平面垂直的判定
专题:空间位置关系与距离,空间角
分析:(1)连接OE,由已知得OE∥AP,由此能证明PA∥平面BDE.
(2)由线面垂直得PO⊥BD,由正方形性质得BD⊥AC,由此能证明BD⊥平面PAC.
(3)以O为原点,OA为x轴,OB为y轴,OP为z轴,建立空间直角坐标系,求出平面BDE的法向量和平面BDC的法向量,由此能求出二面角E-BD-C的大小.
解答: (1)证明:如图所示,连接OE,
∵O是正方形ABCD的中心,∴OC=OA,
∵E是PC的中点,∴CE=EP,
∴OE∥AP,
∵PA?平面BDE,OE?平面BDE,
∴PA∥平面BDE.
(2)证明:∵PO⊥底面ABCD,∴PO⊥BD.
由正方形可得:BD⊥AC,
又PO∩AC=O,∴BD⊥平面PAC.
(3)解:以O为原点,OA为x轴,OB为y轴,OP为z轴,
建立空间直角坐标系,
∵PA=AB=2,∴B(0,
2
,0),D(0,-
2
,0),
C(-
2
,0,0),P(0,0,
2
),E(-
2
2
,0,
2
2
),
BD
=(0,2
2
,0),
BE
=(-
2
2
,-
2
2
2
),
设平面BDE的法向量
n
=(x,y,z),
n
BD
=2
2
x=0
n
BE
=-
2
2
x-
2
y+
2
2
z=0

取y=1,得
n
=(0,1,2),
又平面BDC的法向量
m
=(0,0,1),
设二面角E-BD-C的平面角为θ,
cosθ=|
n
m
|
n
|•|
m
|
|=
1
5
=
5
5

∴二面角E-BD-C的大小为arccos
5
5
点评:本题主要考查直线与平面之间的平行、垂直等位置关系,线面直行、线面垂直、二面角的概念、求法等知识,以及空间想象能力和逻辑推理能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

6位同学站在一排照相,按下列要求,各有多少种不同排法?
①甲、乙必须站在排头或排尾
②甲、乙.丙三人相邻
③甲、乙、丙三人互不相邻
④甲不在排头,乙不在排尾
⑤若其中甲不站在左端,也不与乙相邻.

查看答案和解析>>

科目:高中数学 来源: 题型:

若(x-
a
x2
6的展开式中常数项是60,则常数a的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

高三年上学期期末考试中,某班级数学成绩的频率分布直方图如图所示,数据分组依次如下:[70,90),[90,110),[100,130),[130,150),估计该班级数学成绩的平均分等于(  )
A、112B、114
C、116D、120

查看答案和解析>>

科目:高中数学 来源: 题型:

设a=∫12(3x2-2x)dx,则二项式(ax2-
1
x
6展开式中的第6项的系数为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在斜三棱柱ABC-A1B1C1中,侧面ACC1A1与侧面CBB1C1都是菱形,∠ACC1=∠CC1B1=60°,AC=2.
(Ⅰ)求证:AB1⊥CC1
(Ⅱ)若AB1=
6
,求二面角C-AB1-A1

查看答案和解析>>

科目:高中数学 来源: 题型:

某校高一数学兴趣小组开展竞赛前摸底考试.甲、乙两人参加了5次考试,成绩如下:
第一次第二次第三次第四次第五次
甲的成绩8287868090
乙的成绩7590917495
(Ⅰ)若从甲、乙两人中选出1人参加比赛,你认为选谁合适?写出你认为合适的人选并说明理由;
(Ⅱ)若同一次考试成绩之差的绝对值不超过5分,则称该次考试两人“水平相当”.由上述5次摸底考试成绩统计,任意抽查两次摸底考试,求恰有一次摸底考试两人“水平相当”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列函数f(x)中,满足“对任意x1,x2∈(-∞,0),当x1<x2时,都有f(x1)<f(x2)”的函数是(  )
A、f(x)=-x+1
B、f(x)=x2-1
C、f(x)=2x
D、f(x)=ln(-x)

查看答案和解析>>

科目:高中数学 来源: 题型:

定义:分子为1且分母为正整数的分数叫做单位分数.我们可以把1拆分为无穷多个不同的单位分数之和.例如:1=
1
2
+
1
3
+
1
6
,1=
1
2
+
1
4
+
1
6
+
1
12
,1=
1
2
+
1
5
+
1
6
+
1
12
+
1
20
,…依此方法可得:1=
1
2
+
1
6
+
1
12
+
1
m
+
1
n
+
1
30
+
1
42
+
1
56
+
1
72
+
1
90
+
1
110
+
1
132
+
1
156
,其中m,n∈N*,则m+n=
 

查看答案和解析>>

同步练习册答案