如图,在四棱锥P-ABCD中,平面PAC⊥平面ABCD,且PA⊥AC,PA=AD=2.四边形ABCD满足BC∥AD,AB⊥AD,AB=BC=1.点E,F分别为侧棱PB,PC上的点,且
=λ.![]()
(1)求证:EF∥平面PAD.
(2)当λ=
时,求异面直线BF与CD所成角的余弦值;
(3)是否存在实数λ,使得平面AFD⊥平面PCD?若存在,试求出λ的值;若不存在,请说明理由.
科目:高中数学 来源: 题型:解答题
如图,
是边长为
的正方形,
平面
,
,
,
与平面
所成角为
.![]()
(1)求证:
平面
;
(2)求二面角
的余弦值;
(3)设点
是线段
上一个动点,试确定点
的位置,使得
平面
,并证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,ABCD是边长为3的正方形,DE⊥平面ABCD,AF∥DE,DE=3AF,BE与平面ABCD所成的角为60°. ![]()
(1)求证:AC⊥平面BDE;
(2)求二面角F-BE-D的余弦值;
(3)设点M是线段BD上一个动点,试确定点M的位置,使得AM∥平面BEF,并证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图所示,四边形
为直角梯形,
,
,
为等边三角形,且平面
平面
,
,
为
中点.![]()
(1)求证:![]()
;
(2)求平面
与平面
所成的锐二面角的余弦值;
(3)在
内是否存在一点
,使
平面
,如果存在,求
的长;如果不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在多面体ABCDE中,DB⊥平面ABC,AE∥DB,且△ABC是边长为2的等边三角形,AE=1,CD与平面ABDE所成角的正弦值为
.![]()
(Ⅰ)若F是线段CD的中点,证明:EF⊥面DBC;
(Ⅱ)求二面角D-EC-B的平面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满
分l2分)(注意:在试题卷上作答无效)![]()
如图,四棱锥
中,
∥
,
,侧面
为等边三角形.![]()
.
(I) 证明:![]()
(II) 求AB与平面SBC所成角的大小。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com