分析 设点P在准线上的射影为D,由抛物线的定义把问题转化为求|PA|+|PD|的最小值,同时可推断出当D,P,A三点共线时|PA|+|PD|最小,答案可得.
解答 解:设点P在准线上的射影为D,由抛物线的定义可知|PF|=|PD|,
∴要求|PA|+|PF|的最小值,即求|PA|+|PD|的最小值,
只有当D,P,A三点共线时|PA|+|PD|最小,
令y=3,可得x=$\frac{9}{4}$,
∴当|PA|+|PF|取最小值时点P的坐标为($\frac{9}{4}$,3).
故答案为($\frac{9}{4}$,3).
点评 本题考查了抛物线的定义与标准方程、平面几何中求距离和的最小值等知识,正确运用抛物线的定义是关键.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | k≤-1或k≥1 | B. | -1≤k≤1 | C. | -$\sqrt{2}$<k<$\sqrt{2}$ | D. | -1<k<1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com