精英家教网 > 高中数学 > 题目详情
13.若f(x)=ex,则$\underset{lim}{△x→0}$$\frac{f(1+△x)-f(1)}{△x}$=(  )
A.eB.-eC.2eD.-2e

分析 根据导数和定义和导数的法则计算即可.

解答 解:∵f(x)=ex
∴f′(x)=ex,则
∴$\underset{lim}{△x→0}$$\frac{f(1+△x)-f(1)}{△x}$=f′(1)=e,
故选:A.

点评 本题考查了导数的定义和导数的运算法则,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别为$\frac{3}{5}$和$\frac{2}{3}$,现安排甲组研发新产品A,乙组研发新产品B,设甲、乙两组的研发相互独立.
(1)求只有一种新产品研发成功的概率;
(2)若新产品A研发成功,预计企业可获利润50万元,若新产品B研发成功,预计企业可获利润60万元,求该企业可获利润的均值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知点F1是抛物线C:x2=2py(p>0)的焦点,点F2为抛物线C的对称轴与其准线的交点,过F2作抛物线C的切线,切点为A,若点A恰好在以F1,F2为焦点的双曲线上,则双曲线的离心率为(  )
A.$\sqrt{3}$B.$\sqrt{2}$C.$\sqrt{3}$+1D.$\sqrt{2}$+1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.过抛物线y2=4x的焦点作直线与其交于M、N两点,作平行四边形MONP,则点P的轨迹方程为y2=4(x-2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设i是虚数单位,则|1-i-$\frac{2}{i}}$|等于$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.命题“?x∈R,cosx<$\frac{1}{2}$”的否定是(  )
A.?x<R,cosx≥$\frac{1}{2}$B.?x∈R,cosx>$\frac{1}{2}$C.?x<R,cosx≥$\frac{1}{2}$D.?x∈R,cosx>$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知a>0,函数f(x)=-2asin(2x+$\frac{π}{6}$)+2a+b,当x∈[0,$\frac{π}{2}$]时,-5≤f(x)≤1.
(1)求常数a,b的值;
(2)求f(x)的单调区间;
(3)指出所求函数图象是由f(x)=sinx的图象如何变换得到的.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.执行如图的程序后,输出的值是(  )
A.17B.19C.21D.23

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知M={x|($\frac{1}{2}$)x<2},N={x|log2x<1},则M∩N=(  )
A.{x|x>-1}B.{x|-1<x<2}C.{x|0<x<2}D.{x|x<2}

查看答案和解析>>

同步练习册答案