精英家教网 > 高中数学 > 题目详情

设函数(其中),,已知它们在处有相同的切线.
(1)求函数的解析式;
(2)求函数上的最小值;
(3)判断函数零点个数.

(1).
(2)
(3)函数只有一个零点.

解析试题分析:(1) 应用导数的几何意义,确定切点处的导函数值,得切线斜率,建立的方程组.
(2) 应用导数研究函数的最值,基本步骤明确,本题中由于的不确定性,应该对其取值的不同情况加以讨论.
时,单调递减,单调递增,
得到.
时,单调递增,得到
 .
(3)由题意
求导得
,确定的单调区间:上单调递增,在上单调递减
根据
得到函数只有一个零点.           13分,即得所求.
试题解析:(1)                       1分
由题意,两函数在处有相同的切线.

.                         3分
(2) ,由,由
单调递增,在单调递减.               4分

时,单调递减,单调递增,
.                                      5分
时,单调递增,

                  6分
(3)由题意
求导得,         8分
,由 
所以上单调递增,在上单调递减    10分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数.
(1)当时,求函数上的最大值;
(2)令,若在区间上不单调,求的取值范围;
(3)当时,函数的图像与x轴交于两点,且,又的导函数,若正常数满足条件.证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知某商品的进货单价为1元/件,商户甲往年以单价2元/件销售该商品时,年销量为1万件,今年拟下调销售单价以提高销量,增加收益.据测算,若今年的实际销售单价为x元/件(1≤x≤2),今年新增的年销量(单位:万件)与(2-x)2成正比,比例系数为4.
(1)写出今年商户甲的收益y(单位:万元)与今年的实际销售单价x间的函数关系式;
(2)商户甲今年采取降低单价,提高销量的营销策略是否能获得比往年更大的收益(即比往年收益更多)?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知某商品的进货单价为1元/件,商户甲往年以单价2元/件销售该商品时,年销量为1万件,今年拟下调销售单价以提高销量,增加收益.据测算,若今年的实际销售单价为x元/件(1≤x≤2),今年新增的年销量(单位:万件)与(2-x)2成正比,比例系数为4.
(1)写出今年商户甲的收益y(单位:万元)与今年的实际销售单价x间的函数关系式;
(2)商户甲今年采取降低单价,提高销量的营销策略是否能获得比往年更大的收益(即比往年收益更多)?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知向量为常数, 是自然对数的底数),曲线在点处的切线与轴垂直,
(Ⅰ)求的值及的单调区间;
(Ⅱ)已知函数 (为正实数),若对于任意,总存在, 使得,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=x2-mlnx+(m-1)x,当m≤0时,试讨论函数f(x)的单调性;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=ax3+bx2-3x(a、b∈R)在点x=-1处取得极大值为2.
(1)求函数f(x)的解析式;
(2)若对于区间[-2,2]上任意两个自变量的值x1、x2,都有|f(x1)-f(x2)|≤c,求实数c的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=4x3+3tx2-6t2xt-1,x∈R,其
t∈R.
①当t=1时,求曲线yf(x)在点(0,f(0))处的切线方程;
②当t≠0时,求f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知是常数),若对曲线上任意一点处的切线恒成立,求的取值范围.

查看答案和解析>>

同步练习册答案