精英家教网 > 高中数学 > 题目详情
13.若角α终边所在的直线经过P(cos$\frac{3π}{4}$,sin$\frac{3π}{4}$),O为坐标原点,则|OP|=1,sinα=±$\frac{\sqrt{2}}{2}$.

分析 易得|OP|的值,由条件利用任意角的三角函数的定义,分类讨论求得sinα的值.

解答 解:角α终边所在的直线经过P(cos$\frac{3π}{4}$,sin$\frac{3π}{4}$),即点P(-$\frac{\sqrt{2}}{2}$,$\frac{\sqrt{2}}{2}$),则|OP|=$\sqrt{{cos}^{2}\frac{3π}{4}{+sin}^{2}\frac{3π}{4}}$=1.
若角α终边在第二象限,则sinα=$\frac{\sqrt{2}}{2}$,若角α终边在第四象限,则sinα=-$\frac{\sqrt{2}}{2}$,
故答案为:1;±$\frac{\sqrt{2}}{2}$.

点评 本题主要考查任意角的三角函数的定义,体现了分类讨论的数学思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知a,b,c均为直线,α,β为平面.下面关于直线与平面关系的命题:
(1)任意给定一条直线a与一个平面α,则平面α内必存在与a垂直的直线;
(2)任意给定的三条直线a,b,c,必存在与a,b,c都相交的直线;
(3)α∥β,a?α,b?β,必存在与a,b都垂直的直线;
(4)α⊥β,α∩β=c,a?α,b?β,若a不垂直c,则a不垂直b.
其中真命题的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.将直角边长为1的等腰直角△ABC沿x轴正方向滚动,某时刻A与坐标原点重合(如图),设顶点A(x,y)的轨迹方程是y=f(x),关于函数y=f(x)有下列说法:
①f(x)的值域为[0,$\sqrt{2}$];
②f(x)是周期函数且周期为1+$\sqrt{2}$;
③f(x)的一个减区间是[$\sqrt{2}$,$\sqrt{2}$+2];
④${∫}_{0}^{\sqrt{2}+1}$f(x)dx=$\frac{3π}{4}$+$\frac{1}{2}$;
⑤f(1)<f($\sqrt{2}$+1)<f(100+51$\sqrt{2}$).
其中正确命题的序号为①③④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设函数f(x)=x|x-a|+b,a,b∈R
(Ⅰ)当a>0时,讨论函数f(x)的零点个数;
(Ⅱ)若对于给定的实数a(-1<a<0),存在实数b,使不等式x-$\frac{1}{2}≤f(x)≤x+\frac{1}{2}$对于任意x∈[2a-1,2a+1]恒成立.试将最大实数b表示为关于a的函数m(a),并求m(a)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.数列{an}的前n项和为Sn,Sn=2n-n,等差数列{bn}的各项为正实数,其前n项和为Tn,且T3=15,又a1+b1,a2+b2,a3+b3-1成等比数列.
(I)求数列{an},{bn}的通项公式;
(Ⅱ)若cn=an•bn,当n≥2时求数列{cn}的前n项和An

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知$\frac{a+i}{1+i}-\frac{1}{2}$=b(1+i)(其中i为虚数单位,a,b∈R),则a等于(  )
A.-2B.2C.-1D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某市为了宣传环保知识,举办了一次“环保知识知多少”的问卷调查活动(一人答一份).现从回收的年龄在20~60岁的问卷中随机抽取了n份,统计结果如图表所示.
组号年龄
分组
答对全卷
的人数
答对全卷的人数
占本组的概率
1[20,30)28b
2[30,40)270.9
3[40,50)50.5
4[50,60]a0.4
(1)分别求出a,b,c,n的值;
(2)从第3,4组答对全卷的人中用分层抽样的方法抽取6人,在所抽取的6人中随机抽取2人授予“环保之星”,记X为第3组被授予“环保之星”的人数,求X的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在“中国好声音”的一场海选中,有5位歌手参与评选,有3位导师参与挑选歌手,被导师选中的歌手将归入相应的导师一组,如果一位歌手同时被多位导师选中,则由歌手自己确定归入哪个导师组,如果3位导师都没有选中某位歌手,则该歌手被淘汰,若限定一位导师最多选中3位歌手,那么本场海选结束后,这5位歌手所有可能的结果有210种.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.己知函数f(x)=2cos(ωx+φ)(ω>0,0<φ<$\frac{π}{2}$)的最小正周期为万,点($\frac{5π}{24}$,0)为它的图象的一个对称中心.
(Ⅰ)求函数f(x)的单调递增区间;
(Ⅱ)在△ABC,a,b,c分别为角A,B,C的对应边,若f(-$\frac{A}{2}$)=$\sqrt{2}$,a=3,求b+c的最大值.

查看答案和解析>>

同步练习册答案