精英家教网 > 高中数学 > 题目详情
18.若数列{an}满足$\frac{{a}_{1}}{3}$+$\frac{{a}_{2}}{{3}^{2}}$+…+$\frac{{a}_{n}}{{3}^{n}}$=$\frac{1}{2}$n2+$\frac{n}{2}$,求an

分析 通过$\frac{{a}_{1}}{3}$+$\frac{{a}_{2}}{{3}^{2}}$+…+$\frac{{a}_{n}}{{3}^{n}}$=$\frac{1}{2}$n2+$\frac{n}{2}$与$\frac{{a}_{1}}{3}$+$\frac{{a}_{2}}{{3}^{2}}$+…+$\frac{{a}_{n}}{{3}^{n}}$+$\frac{{a}_{n+1}}{{3}^{n+1}}$=$\frac{1}{2}$(n+1)2+$\frac{n+1}{2}$作差、计算可知an+1=(n+1)•3n+1,进而可得结论.

解答 解:∵$\frac{{a}_{1}}{3}$+$\frac{{a}_{2}}{{3}^{2}}$+…+$\frac{{a}_{n}}{{3}^{n}}$=$\frac{1}{2}$n2+$\frac{n}{2}$,
∴$\frac{{a}_{1}}{3}$+$\frac{{a}_{2}}{{3}^{2}}$+…+$\frac{{a}_{n}}{{3}^{n}}$+$\frac{{a}_{n+1}}{{3}^{n+1}}$=$\frac{1}{2}$(n+1)2+$\frac{n+1}{2}$,
两式相减得:$\frac{{a}_{n+1}}{{3}^{n+1}}$=$\frac{1}{2}$(n+1)2+$\frac{n+1}{2}$-($\frac{1}{2}$n2+$\frac{n}{2}$)=n+1,
∴an+1=(n+1)•3n+1
又∵$\frac{{a}_{1}}{3}$=$\frac{1}{2}+\frac{1}{2}$=1,即a1=3满足上式,
∴an=n•3n

点评 本题考查数列的通项,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知cosα=$\frac{1}{7}$,cos(α-β)=$\frac{11}{14}$,α,β均是锐角,求cos(2α-β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知△ABC中,cosA=-$\frac{3}{5}$,sinB=$\frac{12}{13}$,求cos$\frac{A-B}{2}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.关于x的方程cos2x+sin2x=2k在(0,$\frac{π}{2}$)上有两个不同的实数解,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知单调递增的等比数列{bn}满足:b3+b5=40,b1b7=256,求数列{bn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.若3f(x)+2f(1-x)=2x,求f(x)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知x>0,y>0,$\frac{2}{x}$+$\frac{8}{y}$=3,则xy最小值$\frac{8}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知在△ABC中,若tanA•tanB•tanC<0,则这个三角形的形状是钝角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.函数y=2(sin2x-cos2x)的最小正周期是π.

查看答案和解析>>

同步练习册答案