精英家教网 > 高中数学 > 题目详情
12.已知f(x)是定义在R上的函数,若对于任意的x,y∈R,都有f(x+y)=f(x)+f(y),且x>0,有f(x)>0.
(1)求证:f(0)=0;
(2)判断函数的奇偶性;
(3)判断函数f(x)在R上的单调性,并证明你的结论.

分析 (1)直接令x=y=0,代入f(x+y)=f(x)+f(y)即可;
(2)令x=-y,所以有f(0)=f(x)+f(-x),即证明为奇函数;
(3)直接利用函数的单调性定义证明即可;

解答 解:(1)由f(x+y)=f(x)+f(y),令x=y=0,
∴f(0)=2f(0),∴f(0)=0.
(2)由f(x+y)=f(x)+f(y),令x=-y,
∴f(0)=f(x)+f(-x),
即f(-x)=-f(x),且f(0)=0,
∴f(x)是奇函数.
(3)f(x)在R上是增函数.
证明:在R上任取x1,x2,并且x1>x2
∴f(x1-x2)=f(x1)-f(x2).
∵x1>x2,即x1-x2>0,
∴f(x1-x2)=f(x1)-f(x2)>0,
∴f(x)在R上是增函数.

点评 本题主要考查了抽象函数的数值证明、函数单调性与奇偶性定义,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知抛物线E:y2=2px焦点为F,准线为l,P为l上任意点.过P作E的一条切线,切点分别为Q.
(1)若过F垂直于x轴的直线交抛物线所得的弦长为4,求抛物线的方程;
(2)求证:以PQ为直径的圆恒过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知集合A={3,log2(a2+3a)},B={a,b,1},若A∩B={2},则集合A∪B=(  )
A.{1,2,3,4}B.{-4,1,2,3}C.{1,2,3}D.{-1,4,2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数y=f(x+2)的图象关于直线x=-2对称,且当x∈(0,+∞)时,f(x)=|log2x|,若a=f(-3),b=f($\frac{1}{4}$),c=f(2),则a,b,c的大小关系是(  )
A.a>b>cB.b>a>cC.c>a>bD.a>c>b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.(1)若函数f(x)=$\frac{ax+1}{x+b}$的图象的对称中心为(2,1),求实数a、b.
(2)已知函数y=f(x)的定义域为R,且当x∈R时,f(m+x)=-f(m-x)+2n恒成立,求证y=f(x)的图象关于点(m,n)对称.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,圆锥顶点为P,底面圆心为O,其母线与底面所成的角为45°,AB和CD是底面圆O上的两条平行的弦,∠COD=60°.
(1)证明:平面PAB与平面PCD的交线平行于底面;
(2)求轴OP与平面PCD所成的角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.集合A={x|x2-5x+4<0},B={x||a-x|<1},则“B⊆A”是“a∈(2,3)”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知数列{an}满足:a1=1,且an+1=3an+3n-1(n∈N*
(1)若数列{${\frac{{{a_n}+λ}}{3^n}}\right.$}为等差数列,求λ的值
(2)设数列{${\frac{4n-2}{{3{a_n}-n-1}}}$}的前n项和为Sn,求证:Sn<3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.对于函数f(x)与g(x),若区间[a,b]上|f(x)-g(x)|的最大值称为f(x)与g(x)的“绝对差”,则f(x)=$\frac{1}{x+1}$,g(x)=$\frac{2}{9}$x2-x在[1,4]上的“绝对差”为(  )
A.$\frac{271}{72}$B.$\frac{23}{18}$C.$\frac{29}{45}$D.$\frac{13}{9}$

查看答案和解析>>

同步练习册答案