精英家教网 > 高中数学 > 题目详情
15.sin1680°+tan2010°的值为(  )
A.$\frac{1}{6}$B.$\frac{\sqrt{3}}{6}$C.-$\frac{1}{6}$D.-$\frac{\sqrt{3}}{6}$

分析 原式中的角度变形后,利用诱导公式化简即可求出值.

解答 解:∵sin1680°=sin(4×360°+180°+60°)=-sin60°=-$\frac{\sqrt{3}}{2}$,
tan2010°=tan(11×180°+30°)=tan30°=$\frac{\sqrt{3}}{3}$.
∴sin1680°+tan2010°=-$\frac{\sqrt{3}}{6}$.
故选:D.

点评 此题考查了运用诱导公式化简求值,熟练掌握诱导公式是解本题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.函数$y=\frac{{\sqrt{1-{x^2}}}}{{2{x^2}-3x-2}}$的定义域为(  )
A.(-∞,1]B.[-1,1]C.[1,2)∪(2,+∞)D.$[{-1,-\frac{1}{2}})∪({-\frac{1}{2},1}]$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.①直线a与平面α的关系可分为a在平面α外或a在平面α内两类;
②过两异面直线中的一条且与另一条直线平行的平面必存在;
③与一个平面内的一条直线平行的直线,必与此平面平行;
④两平行线中有一条与平面α平行,则另一条也与平面α平行.
上述命题中其中真命题的序号是①②.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设$\overrightarrow{i}$=(1,0),$\overrightarrow{j}$=(0,1),$\overrightarrow{a}$=2$\overrightarrow{i}$+3$\overrightarrow{j}$,$\overrightarrow{b}$=k$\overrightarrow{i}$-4$\overrightarrow{j}$,若$\overrightarrow{a}$⊥$\overrightarrow{b}$,则实数k的值为6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知sinθ与cosθ是方程6x2-5x+m=0的两根,求m和sin3θ+cos3θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.记等差数列的前n项和为Sn,若S2=4,S4=20,则S6等于48.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知二次函数f(x),当x=2时,函数有最大值1,且图象被x轴所截的两点间的距离为6,求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若$\underset{lim}{t→0}$$\frac{f({x}_{0}-3t)-f({x}_{0})}{t}$=3,则f′(x0)=(  )
A.-1B.1C.-9D.9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在平面上有A、B、C三点,满足|$\overrightarrow{AB}$|=|$\overrightarrow{AC}$|=1,|$\overrightarrow{BC}$|=$\sqrt{3}$,则$\overrightarrow{AB}$•$\overrightarrow{BC}$+$\overrightarrow{BC}$•$\overrightarrow{CA}$+$\overrightarrow{CA}$•$\overrightarrow{AB}$的值为(  )
A.4B.-4C.-$\frac{5}{2}$D.$\frac{7}{2}$

查看答案和解析>>

同步练习册答案