精英家教网 > 高中数学 > 题目详情
在等差数列{an}中,a1=2,a1+a2+a3=6.
(1)求数列{an}的通项公式;   
(2)令bn=an•3n,求数列{bn}的前n项和Sn
考点:数列的求和
专题:等差数列与等比数列
分析:(1)由已知条件利用等差数列的通项公式求出公差d,由此能求出数列{an}的通项公式.
(2)由bn=an•3n=2•3n,能求出数列{bn}的前n项和Sn
解答: 解:(1)∵等差数列{an}中,a1=2,a1+a2+a3=6,
∴2×3+3d=6,解得d=0,
∴an=2.
(2)bn=an•3n=2•3n
Sn=2×
3(1-3n)
1-3

=3n+1-3.
点评:本题考查数列的通项公式和前n项和公式的求法,解题时要注意等差数列和等比数列的性质的灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=ax-
b
x+1
(a,b∈N*)
f(1)=
1
2
且f(2)<2.
(Ⅰ)求a,b的值;
(Ⅱ)判断并证明函数y=f(x)在区间(-1,+∞)上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱柱ABCD-A1B1C1D1中,AB1⊥BC,AB∥CD,BC⊥AB且AA1=AB=AD=2,∠A1AB=∠DAB=60°.
(1)求证:AB1⊥平面A1BC;
(2)求该四棱柱的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)对任意的实数x、y都有f(x+y)=f(x)+f(y)-1,且当x>0时,f(x)>1.
(1)求证:函数f(x)在R上是增函数;
(2)若关于x的不等式f(x2-ax+5a)<f(m)的解集为{x|-3<x<2},求m的值.
(3)若f(1)=2,求f(2013)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱椎P-ABCD中,PD⊥平面ABCD,四边形ABCD是边长为2的菱形,∠ABC=
3
,PD=2
3
,E是PB的中点.
(Ⅰ)求证:平面AEC⊥平面PDB;
(Ⅱ)求三棱锥D-BCE的体积VD-BCE

查看答案和解析>>

科目:高中数学 来源: 题型:

已知如图(1),梯形ABCD中,AD∥BC,∠ABC=∠BAD=
π
2
,AB=BC=2AD=2,E、F分别是AB、CD上的动点,且EF∥BC,设AE=x(0<x<2),沿EF将梯形ABCD翻折,使使平面AEFD⊥平面EBCF,如图(2).

(1)求证:平面ABE⊥平面ABCD;
(2)若以B、C、D、F为顶点的三棱锥的体积记为f(x),求f(x)的最大值;
(3)当f(x)取得最大值时,求二面角D-BF-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x=1是函数f(x)=2x+
a
x
+lnx
的一个极值点,
(1)求a的值;
(2)求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

现有红、黄、蓝、绿四种不同颜色的灯泡各一个,从中选取三个分别安装在△ABC的三个顶点处,则A处不安装红灯的概率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线E:
x2
a2
-
y2
b2
=1(a>0,b>0)的离心率为
1+
5
2
,圆C是以坐标原点O为圆心,实轴为直径的圆,过双曲线第一象限内的任一点P(x0,y0)作圆C的两条切线,其切点分别为A、B,若直线AB与x轴、y轴分别相交于M、N两点,则
b2
2|OM|2
-
a2
2|ON|2
的值为
 

查看答案和解析>>

同步练习册答案