精英家教网 > 高中数学 > 题目详情
19.设$a=\frac{{\sqrt{2}}}{2}(sin{56°}-cos{56°})$,b=cos50°cos128°+cos40°cos38°,c=cos80°,则a,b,c的大小关系是(  )
A.a>b>cB.b>a>cC.c>a>bD.a>c>b

分析 运用两角和差的正弦和余弦公式,化简整理,再由余弦函数的单调性,即可得到所求大小关系.

解答 解:$a=\frac{{\sqrt{2}}}{2}(sin{56°}-cos{56°})$=sin(56°-45°)=sin11°=cos79°,
b=cos50°•cos128°+cos40°•cos38°=-cos50°•cos52°+sin50°•sin52°
=-cos102°=cos78°,
c=cos80°,
由cos78°>cos79°>cos80°,
即b>a>c.
故选:B.

点评 本题考查三角函数的化简和求值,注意运用两角和差公式和二倍角公式,同时考查余弦函数的单调性,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.已知Sn为等差数列{an}的前n项和,若a6+a10=4,则S15=30.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.小李同学要画函数f(x)=Acos(ωx+φ)的图象,其中ω>0,|φ|<$\frac{π}{2}$,小李同学用“五点法”列表,并填写了一些数据,如下表:
ωx+φ0$\frac{π}{2}$π$\frac{3π}{2}$
X-$\frac{π}{8}$$\frac{3π}{8}$
f(x)303
(1)请将表格填写完整,并求出函数f(x)的解析式;
(2)将f(x)的图象向右平移$\frac{π}{3}$个单位,得到函数y=g(x),求g(x)的图象中离y轴最近的对称轴.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.对某校高一年级学生参加社区服务次数进行统计,随机抽取M名学生作为样本,得到这M名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如下:
分组频数频率
[10,15)100.25
[15,20)25n
[20,25)mp
[25,30]20.05
合计M1
(1)求出表中M,p及图中a的值;
(2)若该校高一学生有360人,试估计该校高一学生参加社区服务的次数在区间[10,15)的人数;
(3)根据服务次数的频率分布直方图,求服务次数的中位数的估计值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知f(n)=1+$\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+…+\frac{1}{2^n}({n∈{N^*}})$,用数学归纳法证明f(n)>$\frac{n}{2}$时,由n=k到n=k+1,左边增加了(  )项.
A.1B.kC.2kD.2k-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.对长期吸烟与患肺癌这两个分类变量的计算中,得出K2的值大于3.841,且查表可得P(K2≥3.841)≈0.05,则下列说法正确的是(  )
A.我们有95%的把握认为长期吸烟与患肺癌有关系,那么在100个长期吸烟的人中必有95人患肺癌
B.从独立性检验的原理可知有95%的把握认为长期吸烟与患肺癌有关系,即某一个人如果长期吸烟,那么他有95%的可能患肺癌
C.从独立性检验的原理可知有超过95%的把握认为长期吸烟与患肺癌有关系,是指有不超过5%的可能性使得推断出现错误
D.以上三种说法都不正确

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下列事件是随机事件的是(  )
①当x≥10时,lgx≥1
②当x∈R,x2-1=0有解
③当a∈R,关于x的方程x2+a=0在实数集内有解
④当sinα>sinβ时,α>β
A.①②B.②③C.③④D.①④

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.如果数列{an}的前n项和为${S_n}=1+{2^n}$,则an=$\left\{\begin{array}{l}{3,n=1}\\{{2}^{n-1},n≥2}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知复数z1=a-4i,z2=8+6i,$\frac{{z}_{1}}{{z}_{2}}$为纯虚数.
(1)求实数a的值;
(2)求|z1•z2|的值.

查看答案和解析>>

同步练习册答案