ijÉä»÷Ô˶¯Ô±ÏòһĿ±êÉä»÷£¬¸ÃÄ¿±ê·ÖΪ3¸ö²»Í¬²¿·Ö£¬µÚÒ»¡¢¶þ¡¢Èý²¿·ÖÃæ»ýÖ®±ÈΪ1£º3£º6£®»÷ÖÐÄ¿±êʱ£¬»÷ÖÐÈκÎÒ»²¿·ÖµÄ¸ÅÂÊÓëÆäÃæ»ý³ÉÕý±È£®
£¨1£©ÈôÉä»÷4´Î£¬Ã¿´Î»÷ÖÐÄ¿±êµÄ¸ÅÂÊΪ
1
3
ÇÒÏ໥¶ÀÁ¢£®Éè¦Î±íʾĿ±ê±»»÷ÖеĴÎÊý£¬Çó¦ÎµÄ·Ö²¼ÁкÍÊýѧÆÚÍûE£¨¦Î£©£»
£¨2£©ÈôÉä»÷2´Î¾ù»÷ÖÐÄ¿±ê£¬A±íʾʼþ¡°µÚÒ»²¿·ÖÖÁÉÙ±»»÷ÖÐ1´Î»òµÚ¶þ²¿·Ö±»»÷ÖÐ2´Î¡±£¬ÇóʼþA·¢ÉúµÄ¸ÅÂÊ£®
¿¼µã£ºÀëÉ¢ÐÍËæ»ú±äÁ¿¼°Æä·Ö²¼ÁÐ,ÀëÉ¢ÐÍËæ»ú±äÁ¿µÄÆÚÍûÓë·½²î
רÌ⣺¸ÅÂÊÓëͳ¼Æ
·ÖÎö£º£¨1£©ÀûÓöþÏî·Ö²¼¼°ÆäÊýѧÆÚÍû¼´¿ÉµÃ³ö£»
£¨2£©ÀûÓû¥³âʼþºÍ¶ÀÁ¢Ê¼þµÄ¸ÅÂʼÆË㹫ʽ¼´¿ÉµÃ³ö£®
½â´ð£º ½â£º£¨1£©ÒÀÌâÒâÖª¦Î¡«B(4£¬
1
3
)
£¬¦ÎµÄ·Ö²¼ÁÐ
¦Î 0 1 2 3 4
P
16
81
32
81
24
81
8
81
1
81
ÊýѧÆÚÍûE£¨¦Î£©=0¡Á
16
81
+1¡Á
32
81
+2¡Á
24
81
+3¡Á
8
81
+4¡Á
1
81
=
4
3
£¨»òE£¨¦Î£©=np=
4
3
£©£®
£¨2£©ÉèAi±íʾʼþ¡°µÚÒ»´Î»÷ÖÐÄ¿±êʱ£¬»÷ÖеÚi²¿·Ö¡±£¬i=1£¬2£¬
Bi±íʾʼþ¡°µÚ¶þ´Î»÷ÖÐÄ¿±êʱ£¬»÷ÖеÚi²¿·Ö¡±£¬i=1£¬2£®
ÒÀÌâÒ⣬֪P£¨A1£©=P£¨B1£©=0.1£¬P£¨A2£©=P£¨B2£©=0.3£¬
A=A1
.
B1
¡È
.
A1
B1¡ÈA1B1¡ÈA2B2
£¬
ËùÇóµÄ¸ÅÂÊΪP£¨A£©=P(A1
.
B1
)+P(
.
A1
B1)+P(A1B1)
+P£¨A2B2£©
=P(A1)P(
.
B1
)+
P(
.
A1
)P(B1)+P(A1)P(B1)
+P£¨A2£©P£¨B2£©
=0.1¡Á0.9+0.9¡Á0.1+0.1¡Á0.1+0.3¡Á0.3=0.28£®
´ð£ºÊ¼þAµÄ¸ÅÂÊΪ0.28£®
Áí½â£º¼Ç¡°µÚÒ»²¿·ÖÖÁÉÙ»÷ÖÐÒ»´Î¡±ÎªÊ¼þC£¬¡°µÚ¶þ²¿·Ö±»»÷Öжþ´Î¡±ÎªÊ¼þD£¬
ÔòP£¨C£©=
C
1
2
¡Á0.1¡Á0.9+0.1¡Á0.1
=0.19£¬P£¨D£©=0.3¡Á0.3=0.09£®
P£¨A£©=P£¨C£©+P£¨D£©=0.28£®
´ð£ºÊ¼þA·¢ÉúµÄ¸ÅÂÊΪ0.28£®
µãÆÀ£ºÊìÁ·ÕÆÎÕ¶þÏî·Ö²¼¼°Æä·Ö²¼ÁÐÓëÊýѧÆÚÍû¡¢»¥³âʼþºÍ¶ÀÁ¢Ê¼þµÄ¸ÅÂʼÆË㹫ʽÊǽâÌâµÄ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ºÐ×ÓÖÐÓдóСÏàͬµÄÇò10¸ö£¬ÆäÖбêºÅΪ1µÄÇò3¸ö£¬±êºÅΪ2µÄÇò4¸ö£¬±êºÅΪ5µÄÇò3¸ö£®ÏÈ´ÓºÐ×ÓÖÐÈÎÈ¡2¸öÇò£¨¼ÙÉèÈ¡µ½Ã¿¸öÇòµÄ¿ÉÄÜÐÔÏàͬ£©£¬ÉèÈ¡µ½Á½¸öÇòµÄ±àºÅÖ®ºÍΪ¦Î£®
£¨1£©ÇóËæ»ú±äÁ¿¦ÎµÄ·Ö²¼ÁУ»
£¨2£©ÇóÁ½¸öÇò±àºÅÖ®ºÍ´óÓÚ6µÄ¸ÅÂÊ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÈçͼËùʾ£º¾ØÐÎAnBnCnDnµÄÒ»±ßAnBnÔÚxÖáÉÏ£¬ÁíÁ½¸ö¶¥µãCn¡¢DnÔÚº¯Êýf(x)=x+
1
x
(x£¾0)
µÄͼÏóÉÏ£¬ÈôµãBnµÄ×ø±êΪ£¨n£¬0£©£¨n¡Ý2£¬n¡ÊN*£©£©£¬¾ØÐÎAnBnCnDnµÄÖܳ¤¼ÇΪan£¬Ôòa2+a3+¡­+a10=
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Ñ¡×öÌâ
£¨1£©£¨¾ØÕóÓë±ä»»Ñ¡×öÌ⣩ÒÑÖª¾ØÕóM=
10
02
£¬ÇúÏßy=sinxÔÚ¾ØÕóMN¶ÔÓ¦µÄ±ä»»×÷ÓÃϵõ½ÇúÏßC£¬ÔòCµÄ·½³ÌÊÇ
 
£®
£¨2£©£¨¼«×ø±êÓë²ÎÊý·½³ÌÑ¡×öÌ⣩ÔÚ¼«×ø±êϵÖУ¬µã£¨2£¬
¦Ð
2
£©µ½Ö±ÏߦÑsin(¦È+
¦Ð
4
)+
2
=0
µÄ¾àÀëÊÇ
 
£®
£¨3£©£¨²»µÈʽѡ½²Ñ¡×öÌ⣩Èô¹ØÓÚxµÄ²»µÈʽ|x-1|-|x+2|¡ÝaµÄ½â¼¯ÎªR£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾­Êг¡µ÷²é£ºÉú²úij²úÆ·ÐèͶÈëÄê¹Ì¶¨³É±¾Îª3ÍòÔª£¬Ã¿Éú²úxÍò¼þ£¬ÐèÁíͶÈëÁ÷¶¯³É±¾ÎªW£¨x£©ÍòÔª£¬ÔÚÄê²úÁ¿²»×ã8Íò¼þʱ£¬W(x)=
1
3
x2+x
£¨ÍòÔª£©£¬ÔÚÄê²úÁ¿²»Ð¡ÓÚ8Íò¼þʱ£¬W(x)=6x+
100
x
-38
£¨ÍòÔª£©£®Í¨¹ýÊг¡·ÖÎö£¬Ã¿¼þ²úÆ·ÊÛ¼ÛΪ5Ԫʱ£¬Éú²úµÄÉÌÆ·Äܵ±ÄêÈ«²¿ÊÛÍ꣮
£¨1£©Ð´³öÄêÀûÈóL£¨x£©£¨ÍòÔª£©¹ØÓÚÄê²úÁ¿x£¨Íò¼þ£©µÄº¯Êý½âÎöʽ£»
£¨×¢£ºÄêÀûÈó=ÄêÏúÊÛÊÕÈë-¹Ì¶¨³É±¾-Á÷¶¯³É±¾£©
£¨2£©Äê²úÁ¿Îª¶àÉÙÍò¼þʱ£¬ÔÚÕâÒ»ÉÌÆ·µÄÉú²úÖÐËù»ñÀûÈó×î´ó£¿×î´óÀûÈóÊǶàÉÙ£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬ÔÚ³¤·½ÐÎABCDÖУ¬AB=2£¬BC=1£¬EΪCDµÄÖе㣬FΪAEµÄÖе㣮ÏÖÔÚÑØAE½«Èý½ÇÐÎADEÏòÉÏÕÛÆð£¬ÔÚÕÛÆðµÄͼÐÎÖнâ´ðÏÂÁÐÁ½ÎÊ£º

£¨¢ñ£©ÔÚÏß¶ÎABÉÏÊÇ·ñ´æÔÚÒ»µãK£¬Ê¹BC¡ÎÃæDFK£¿Èô´æÔÚ£¬ÇëÖ¤Ã÷ÄãµÄ½áÂÛ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£»
£¨¢ò£©ÈôÃæADE¡ÍÃæABCE£¬Çó¶þÃæ½ÇE-AD-BµÄÓàÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔÚ¡÷ABCÖУ¬ÈôsinA+sinB=sinC•£¨cosA+cosB£©£¬ÊÔÅжϡ÷ABCµÄÐÎ×´£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

»¯¼ò
sin4¦Á
4sin2(
¦Ð
4
+¦Á)tan(
¦Ð
4
-¦Á)
=£¨¡¡¡¡£©
A¡¢sin2¦ÁB¡¢cos2¦Á
C¡¢sin¦ÁD¡¢cos¦Á

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èô¹ØÓÚxµÄÒ»Ôª¶þ´Î²»µÈʽkx2+2x-1£¼0µÄ½â¼¯ÊÇR£¬ÔòkµÄȡֵ·¶Î§ÊÇ          £¨¡¡¡¡£©
A¡¢k£¼-1B¡¢k£¼0
C¡¢-1£¼k£¼0D¡¢k£¾1

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸