精英家教网 > 高中数学 > 题目详情
盒子中有大小相同的球10个,其中标号为1的球3个,标号为2的球4个,标号为5的球3个.先从盒子中任取2个球(假设取到每个球的可能性相同),设取到两个球的编号之和为ξ.
(1)求随机变量ξ的分布列;
(2)求两个球编号之和大于6的概率.
考点:离散型随机变量及其分布列,互斥事件的概率加法公式
专题:概率与统计
分析:(1)由题意可得,随机变量ξ的取值是2、3、4、6、7、10.分别求出P(ξ=2),P(ξ=3),P(ξ=4),P(ξ=6),P(ξ=7),P(ξ=10),由此能求出随机变量ξ的分布列.
(2)由随机变量ξ的分布列,能求出两个球编号之和大于6的概率.
解答: 解:(1)ξ的取值为2,3,4,6,7,10…(1分)
p(ξ=2)=
C
2
3
C
2
10
=
1
15

p(ξ=3)=
C
1
3
C
1
4
C
2
10
=
4
15

p(ξ=4)=
C
2
4
C
2
10
=
2
15

p(ξ=6)=
C
1
3
C
1
3
C
2
10
=
1
5

p(ξ=7)=
C
1
4
C
1
3
C
2
10
=
4
15

p(ξ=10)=
C
2
3
C
2
10
=
1
15
…(7分)
ξ的分布列为
ξ 2 3 4 6 7 10
P
1
15
4
15
2
15
1
5
4
15
1
15
…(9分)
(2)两个球编号之和大于6的概率p(ξ>6)=p(ξ=7)+p(ξ=10)=
4
15
+
1
15
=
1
3
…(13分)
点评:本题考查离散型随机变量的分布列和互斥事件的概率加法公式,是历年高考的必考题型.解题时要认真审题,仔细解答,注意概率知识的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)满足:对任意实数x1,x2,总有f(x1+x2)=f(x1)+f(x2)+1恒成立,f(1)=1,且对任意正整数n,有an=
1
f(n)
bn=f(
1
2n
)+1

(1)求数列{an},{bn}的通项公式;
(2)记Sn=a1a2+a2a3+…+anan+1,Tn=b1b2+b2b3+…+bnbn+1,比较
4
3
Sn
与Tn的大小关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
-2x+1
x2
,x>0
1
x
,x<0
,则f(x)>-1的解集为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

正三棱柱ABC-A1B1C1的底面边长与高相等,P为棱CC1上任一点,截面PAB把棱柱分成两部分的体积比为5:1,则二面角P-AB-C的度数为(  )
A、30°B、45°
C、60°D、75°

查看答案和解析>>

科目:高中数学 来源: 题型:

集合{a,b,c}的所有子集是
 
真子集是
 
;非空真子集是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

《选修4-4:坐标系与参数方程》
在直角坐标系中,以原点为极点,x轴的正半轴为极轴建坐标系,已知曲线C:ρsin2θ=2acosθ(a>0),已知过点P(-2,-4)的直线l的参数方程为
x=-2+
2
2
t
y=-4+
2
2
t
(t为参数),直线 与曲线C分别交于M,N.
(1)写出曲线C和直线l的普通方程;
(2)若|PM|,|MN|,|PN|成等比数列,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x-2
x
+1(x≥1)
(1)求f(x)的反函数f-1(x),并指出其定义域;
(2)若数列{an}的前n项和sn对所有的大于1的自然数n都有sn=f-1(sn-1),且a1=1,求数列{an}的通项公式;
(3)cn=
1
anan+1
,求c1+c2+…+cn

查看答案和解析>>

科目:高中数学 来源: 题型:

巳知一个空间几何体的三视图(如图),则该几何体的表面积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某射击运动员向一目标射击,该目标分为3个不同部分,第一、二、三部分面积之比为1:3:6.击中目标时,击中任何一部分的概率与其面积成正比.
(1)若射击4次,每次击中目标的概率为
1
3
且相互独立.设ξ表示目标被击中的次数,求ξ的分布列和数学期望E(ξ);
(2)若射击2次均击中目标,A表示事件“第一部分至少被击中1次或第二部分被击中2次”,求事件A发生的概率.

查看答案和解析>>

同步练习册答案