| A. | $\frac{16}{3}$ | B. | $\frac{9}{2}$ | C. | -8 | D. | $\frac{17}{2}$ |
分析 先根据约束条件画出可行域,再利用几何意义求最值,只需求出直线z=3y+x过点A时,z最大值即可.
解答
解:作出可行域如图,
由z=3y+x知,y=-$\frac{1}{3}$x+$\frac{1}{3}$z,
所以动直线y=-$\frac{1}{3}$x+$\frac{1}{3}$z的纵截距取得最大值时,
目标函数取得最大值.
结合可行域可知当动直线经过点A时,由$\left\{\begin{array}{l}{x-y=0}\\{x+2y=4}\end{array}\right.$,解得A($\frac{4}{3}$,$\frac{4}{3}$)
目标函数去的最大值$\frac{4}{3}+3×\frac{4}{3}$=$\frac{16}{3}$.
故选:A.
点评 本题主要考查了简单的线性规划,以及利用几何意义求最值,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{{{2^{n-1}}}}$ | B. | $\frac{1}{{{2^n}-1}}$ | C. | $\frac{1}{{{3^{n-1}}}}$ | D. | $\frac{1}{{{2^{n-1}}+1}}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com