精英家教网 > 高中数学 > 题目详情
20.已知实数x,y满足约束条件$\left\{\begin{array}{l}x-y≥0\\ x+2y≤4\\ x-2y≤2\end{array}\right.$,则目标函数z=x+3y的最大值为(  )
A.$\frac{16}{3}$B.$\frac{9}{2}$C.-8D.$\frac{17}{2}$

分析 先根据约束条件画出可行域,再利用几何意义求最值,只需求出直线z=3y+x过点A时,z最大值即可.

解答 解:作出可行域如图,
由z=3y+x知,y=-$\frac{1}{3}$x+$\frac{1}{3}$z,
所以动直线y=-$\frac{1}{3}$x+$\frac{1}{3}$z的纵截距取得最大值时,
目标函数取得最大值.
结合可行域可知当动直线经过点A时,由$\left\{\begin{array}{l}{x-y=0}\\{x+2y=4}\end{array}\right.$,解得A($\frac{4}{3}$,$\frac{4}{3}$)
目标函数去的最大值$\frac{4}{3}+3×\frac{4}{3}$=$\frac{16}{3}$.
故选:A.

点评 本题主要考查了简单的线性规划,以及利用几何意义求最值,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.在△ABC中,D为BC边上一点,AD=BD,AC=4,BC=5.
(1)若∠C=60°,求△ABC外接圆半径R的值;
(2)设∠CAB-∠B=θ,若$tanθ=\frac{{\sqrt{15}}}{7}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.下列命题中,正确的命题序号是①③④.
①已知a∈R,两直线l1:ax+y=1,l2:x+ay=2a,则“a=-1”是“l1∥l2”的充分条件;
②命题p:“?x≥0,2x>x2”的否定是“?x0≥0,2x0<x02”;
③“sinα=$\frac{1}{2}$”是“α=2kπ+$\frac{π}{6}$,k∈Z”的必要条件;
④已知a>0,b>0,则“ab>1”的充要条件是“a>$\frac{1}{b}$”.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知(ax+1)5的展开式中各项系数和为243,则二项式${({\frac{3x}{a}-\frac{1}{{\root{3}{x}}}})^5}$的展开式中含x项的系数为-$\frac{45}{2}$.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知数列{an}满足a1=1,${a_2}=\frac{1}{3}$,若${a_n}({a_{n-1}}+2{a_{n+1}})=3{a_{n-1}}•{a_{n+1}}(n≥2,n∈{N^*})$,则数列{an}的通项an=(  )
A.$\frac{1}{{{2^{n-1}}}}$B.$\frac{1}{{{2^n}-1}}$C.$\frac{1}{{{3^{n-1}}}}$D.$\frac{1}{{{2^{n-1}}+1}}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.函数$f(x)=ln(1-\frac{1}{x+3})$的定义域为{x|x<-3或x>-2}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知i是虚数单位,设1+ai=$\frac{2+bi}{i}$(a、b为实数),则a+bi在复平面内对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.如图是半径分别为1,2,3的三个同心圆,现随机向最大圆内抛一粒豆子,则豆子落入图中阴影部分的概率为$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.我国南宋时期著名的数学家秦九韶在其著作《数学九章》中独立提出了一种求三角形面积的方法-“三斜求积术”,即△ABC的面积S=$\sqrt{\frac{1}{4}[{a}^{2}{c}^{2}-(\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2})^{2}}]$.其中a,b,c分别为△ABC内角A、B、C的对边.若b=2,且tanC=$\frac{\sqrt{3}sinB}{1-\sqrt{3}cosB}$,则△ABC的面积S的最大值为$\sqrt{5}$.

查看答案和解析>>

同步练习册答案