精英家教网 > 高中数学 > 题目详情
10.我国南宋时期著名的数学家秦九韶在其著作《数学九章》中独立提出了一种求三角形面积的方法-“三斜求积术”,即△ABC的面积S=$\sqrt{\frac{1}{4}[{a}^{2}{c}^{2}-(\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2})^{2}}]$.其中a,b,c分别为△ABC内角A、B、C的对边.若b=2,且tanC=$\frac{\sqrt{3}sinB}{1-\sqrt{3}cosB}$,则△ABC的面积S的最大值为$\sqrt{5}$.

分析 由已知利用正弦定理可求c=$\sqrt{3}$a,代入“三斜求积”公式即可计算得解.

解答 解:∵tanC=$\frac{\sqrt{3}sinB}{1-\sqrt{3}cosB}$,
∴sinC=$\sqrt{3}$sin(B+C)=$\sqrt{3}$sinA,
∴c=$\sqrt{3}$a,
∵b=2,
∴S=$\sqrt{\frac{1}{4}[{a}^{2}{c}^{2}-(\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2})^{2}}]$=$\sqrt{\frac{1}{4}[3{a}^{4}-(2{a}^{2}-2)^{2}]}$=$\sqrt{-\frac{1}{4}({a}^{2}-4)^{2}+5}$,
∴a=2时,△ABC的面积S的最大值为$\sqrt{5}$,
故答案为$\sqrt{5}$.

点评 本题主要考查了正弦定理在解三角形中的应用,考查了转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知实数x,y满足约束条件$\left\{\begin{array}{l}x-y≥0\\ x+2y≤4\\ x-2y≤2\end{array}\right.$,则目标函数z=x+3y的最大值为(  )
A.$\frac{16}{3}$B.$\frac{9}{2}$C.-8D.$\frac{17}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若点(θ,0)是函数f(x)=sinx+3cosx的一个对称中心,则cos2θ+sinθcosθ=-$\frac{11}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}{x=\sqrt{2}cosφ}\\{y=sinφ}\end{array}\right.$(其中φ为参数),曲线C2:x2+y2-2y=0,以原点O为极点,x轴的正半轴为极轴建立极坐标系.
(Ⅰ)求曲线C1,C2的极坐标方程;
(Ⅱ)射线l:θ=$\frac{π}{4}$(ρ≥0)与曲线C1,C2分别交于点A,B(均异于原点O),求|AB|值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设实数a∈(0,1),则函数f(x)=x2-(2a+1)x+a2+1有零点的概率为(  )
A.$\frac{3}{4}$B.$\frac{2}{3}$C.$\frac{1}{3}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如图所示的流程图,若输入某个正整数n后,输出的S∈($\frac{15}{16}$,$\frac{63}{64}$),则输入的n的值为(  )
A.7B.6C.5D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,且过点A($\sqrt{3}$,$\frac{1}{2}$).
(1)求椭圆C的方程;
(2)已知直线l过点M(0,2),且与椭圆C交于P、Q(异于椭圆C的顶点)两点
(i)求△OPQ面积的最大值(O为坐标点);
(ii)在y轴上是否存在定点N,使得$\overrightarrow{NP}$•$\overrightarrow{NQ}$为定值?如果存在,求出定点与定值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.(a+2b)(2a+b)4的展开式中,a2b3项的系数为32.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知Rt△ABC中,AB=3,AC=1,$∠A=\frac{π}{2}$,以B,C为焦点的双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)经过点A,且与AB边交于点D,若$\frac{{|{AD}|}}{{|{BD}|}}$的值为(  )
A.$\frac{7}{2}$B.3C.$\frac{9}{2}$D.4

查看答案和解析>>

同步练习册答案