精英家教网 > 高中数学 > 题目详情
1.若点(θ,0)是函数f(x)=sinx+3cosx的一个对称中心,则cos2θ+sinθcosθ=-$\frac{11}{10}$.

分析 利用三角函数的图象的对称性求得tanθ的值,再利用同角三角函数的基本关系、二倍角公式求得所给式子的值.

解答 解:∵点(θ,0)是函数f(x)=sinx+3cosx的一个对称中心,∴sinθ+3cosθ=0,∴tanθ=-3,
则cos2θ+sinθcosθ=$\frac{{cos}^{2}θ{-sin}^{2}θ+sinθcosθ}{{sin}^{2}θ{+cos}^{2}θ}$=$\frac{1{-tan}^{2}θ+tanθ}{{tan}^{2}θ+1}$=$\frac{1-9-3}{9+1}$=-$\frac{11}{10}$,
故答案为:$-\frac{11}{10}$.

点评 本题主要考查三角函数的图象的对称性,同角三角函数的基本关系、二倍角公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.下列命题中,正确的命题序号是①③④.
①已知a∈R,两直线l1:ax+y=1,l2:x+ay=2a,则“a=-1”是“l1∥l2”的充分条件;
②命题p:“?x≥0,2x>x2”的否定是“?x0≥0,2x0<x02”;
③“sinα=$\frac{1}{2}$”是“α=2kπ+$\frac{π}{6}$,k∈Z”的必要条件;
④已知a>0,b>0,则“ab>1”的充要条件是“a>$\frac{1}{b}$”.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知i是虚数单位,设1+ai=$\frac{2+bi}{i}$(a、b为实数),则a+bi在复平面内对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.如图是半径分别为1,2,3的三个同心圆,现随机向最大圆内抛一粒豆子,则豆子落入图中阴影部分的概率为$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知i为虚数单位,复数z满足i•z=(1-2i)2,则|z|的值为(  )
A.2B.3C.$2\sqrt{3}$D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=lnx-mx2+(1-2m)x+1.
(1)当m=1时,求函数f(x)的单调区间与极值;
(2)若m∈Z,关于x的不等式f(x)≤0恒成立,求m的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.有三名男生和3名女生参加演讲比赛,每人依次按顺序出场比赛,若出场时相邻两个女生之间至少间隔一名男生,则共有(  )种不同的排法.
A.108B.120C.72D.144

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.我国南宋时期著名的数学家秦九韶在其著作《数学九章》中独立提出了一种求三角形面积的方法-“三斜求积术”,即△ABC的面积S=$\sqrt{\frac{1}{4}[{a}^{2}{c}^{2}-(\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2})^{2}}]$.其中a,b,c分别为△ABC内角A、B、C的对边.若b=2,且tanC=$\frac{\sqrt{3}sinB}{1-\sqrt{3}cosB}$,则△ABC的面积S的最大值为$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=ex-f(1)x2+2f′(0)x-e(e是自然对数的底数,f′(0)是函数f(x)在x=0的导数)
(Ⅰ)求函数f(x)在(1,f(1))处的切线方程;
(Ⅱ)若g(x)=$\frac{3}{2}$x2-x+1,解关于x的不等式f(x)+e≥g(x).

查看答案和解析>>

同步练习册答案