精英家教网 > 高中数学 > 题目详情
8.设$\overrightarrow{a}$,$\overrightarrow{b}$是两个不共线的非零向量,若8$\overrightarrow{a}+k\overrightarrow{b}$和k$\overrightarrow{a}+2\overrightarrow{b}$共线,则实数k的值为±4.

分析 利用向量共线定理即可求出.

解答 解:∵$\overrightarrow{a}$,$\overrightarrow{b}$是两个不共线的非零向量,8$\overrightarrow{a}+k\overrightarrow{b}$和k$\overrightarrow{a}+2\overrightarrow{b}$共线,则存在实数λ,使得8$\overrightarrow{a}+k\overrightarrow{b}$=λ(k$\overrightarrow{a}+2\overrightarrow{b}$),
即$\left\{\begin{array}{l}{8=kλ}\\{k=2λ}\end{array}\right.$,解得k=±4,
故答案为:=±4

点评 本题考查了向量的运算和共线定理、向量基本定理,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上的点到两焦点的距离和为$\frac{2}{3}$,短轴长为$\frac{1}{2}$,直线l与椭圆C交于M,N两点.
(Ⅰ)求椭圆C方程;
(Ⅱ)若直线MN与圆O:x2+y2=$\frac{1}{25}$相切,证明:∠MON为定值;
(Ⅲ)在(Ⅱ)的条件下,求|OM||ON|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若$sin(\frac{π}{6}-α)=\frac{1}{4}$,则$sin(2α+\frac{π}{6})$的值为$\frac{7}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知数列{an}的通项公式为${a_n}={(\sqrt{2})^{n-2}}$,则a1=(  )
A.$\sqrt{2}$B.$\frac{1}{2}$C.$\frac{{\sqrt{2}}}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.化简 $\frac{cos40°+\sqrt{3}cos50°}{cos20°}$=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.将一个四面体PABC铁皮盒沿侧棱PA,PB,PC剪开,展平后恰好成一个正三角形.
(Ⅰ)在四面体PABC中,求证:PA⊥BC.
(Ⅱ)若$PA=\sqrt{2}$,求铁皮盒的容积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知数列$\frac{1}{1×4},\frac{1}{4×7},\frac{1}{7×10},…,\frac{1}{(3n-2)(3n+1)}$,…,的前n项和为Sn
(1)计算S1,S2,S3,S4的值,并推测Sn的公式;
(2)用数学归纳法证明Sn的公式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.用数学归纳法证明2n>2n+1,n的第一个取值应是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,直三棱柱ABC-A1B1C1的底面ABC为等腰直角三角形,∠ACB=90°,且AC=AA1
(1)求证:BC1⊥平面AC B1
(2)求二面角B-AB1-C的大小.

查看答案和解析>>

同步练习册答案