精英家教网 > 高中数学 > 题目详情
判断函数y=x3+x的单调性和奇偶性,并证明你的结论.
提示:(a3-b3)=(a-b)(a2+ab+b2)).
考点:函数奇偶性的判断,函数单调性的判断与证明
专题:函数的性质及应用
分析:根据函数单调性和奇偶性的定义分别进行判断和证明.
解答: 证明:1)设?x1,x2∈R且x1<x2
有f(x1)-f(x2)=(x13+x1)-(x23+x2)
=(x13-x23)+(x1-x2)
=(x1-x2)(x12+x1x2+x22)+(x1-x2)
=(x1-x2)(x12+x1x2+x22+1)
=(x1-x2)(x12+x1x2+
1
4
x22+
3
4
x22+1)

=(x1-x2)((x1+
1
2
x2)
2
+
3
4
x22+1)

∵x1<x2∴x1-x2<0显然(x1+
1
2
x2)2+
3
4
x22+1>0

∴f(x1)-f(x2)<0即f(x1)<f(x2
∴y=x3+x在R上是增函数
2)观察可知原函数的定义域为R关于原点对称f(-x)=(-x)3+(-x)=-(x3+x)=f(x)
∴y=x3+x为奇函数.
点评:本题主要考查函数单调性和奇偶性的判断和证明,利用定义法是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
1
2
sin(2x+
π
6
).
(1)求f(x)的单调递增区间及对称中心.
(2)求f(x)>
1
4
的解.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(1,0,-1),
b
=(-1,1,2).
(Ⅰ)若k
a
+
b
a
-2
b
平行,求k的值;
(Ⅱ)若k
a
+
b
a
+3
b
垂直,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2-2ax+2+b(a>0),若f(x)在区间[0,3]上有最大值10,最小值2.
(1)求a,b的值;
(2)若g(x)=f(x)-mx在[2,4]上是单调函数,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列
1
1×3
1
1×5
1
5×7
1
7×9
,…
1
(2n-1)×(2n+1)
,计算S1,S2,S3,由此推测Sn的计算公式,并用数学归纳法证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正方体ABCD-A1B1C1D1中,O是底面正方形ABCD的中心,M,N分别是线段A1B和A1B1的中点.
(Ⅰ)证明:平面MON∥平面B1BCC1
(Ⅱ)证明:平面A1BD⊥平面A1ACC1

查看答案和解析>>

科目:高中数学 来源: 题型:

分别写出由下列各组命题构成的“p∨q”,“p∧q”,“¬p”形式的复合命题,并判断他们的真假:p:平行四边形的对角线相等;q:平行四边形的对角线互相平分.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}满足:a1=5,an+1+4an=5
(Ⅰ)求证:{an-1}是等比数列;
(Ⅱ)设数列bn=|an|,求|bn|的前2014项和S2014

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=1+
2
x
,(x>0)

(1)数列{an}满足a1=1,an+1=
1
f(an)
,(n∈N+)
,求数列{an}的通项公式及数列{2n•an•an+1}的前n项和;
(2)设函数g(x)=
1
2
(x2+1)•[f(x)-1]
,试比较[g(x)]n+2与g(xn)+2n(n∈N+)的大小,并说明理由.

查看答案和解析>>

同步练习册答案