精英家教网 > 高中数学 > 题目详情
已知直线l:2mx+(1-m2)y-4m-4=0,若对任意m∈R,直线l与一定圆相切,则该定圆方程为
 
考点:圆的切线方程
专题:直线与圆
分析:直接取m=0,1,-1得到圆的三条切线方程,求出圆心坐标和半径,则答案可求.
解答: 解:由直线l:2mx+(1-m2)y-4m-4=0,
分别取m=0,1,-1,可得直线为:
y=4,x=4,x=0.
由此可知圆的圆心坐标为(2,2),半径为2.
∴与直线l:2mx+(1-m2)y-4m-4=0相切的定圆的方程为(x-2)2+(y-2)2=4.
故答案为:(x-2)2+(y-2)2=4.
点评:本题考查了圆的方程的求法,训练了特值化思想方法,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)满足f(x)=f(3x),且当x∈[1,3)时,f(x)=lnx.若在区间[1,9)内,存在3个不同的实数x1,x2,x3,使得
f(x1)
x1
=
f(x2)
x2
=
f(x3)
x3
=t,则实数t的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知底面是正方形的长方体ABCD-A1B1C1D1的底面边长AB=6,侧棱长AA1=2
7
,它的外接球的球心为O,点E是AB的中点,点P是球O上任意一点,有以下判断:
①PE长的最大值是9;
②三棱锥P-EBC体积最大值是15+3
7

③存在过点E的平面,截球O的截面面积是8π;
④Q是球O上另一点,PQ=8,则四面体ABPQ体积的最大值为56;
⑤过点E的平面截球O所得截面面积最大时,B1C垂直于该截面.
其中判断正确的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:y2=4x,F为其焦点,A(3,2),点P是抛物线上的动点,当|PA|+|PF|取得最小值时,P点的坐标是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三个平面向量
AB
AC
BC
满足|
AB
|=1,|
AC
|=2,|
BC
|=
3
,点E是BC的中点,若点D满足
BD
=2
AE
,则
AC
AD
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若等比数列{an}的前n项和Sn=2•3n-2+a,等差数列{bn}的前n项和Tn=2n2-n+b,则a+b=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

从某班50名学生的一次数学测试成绩进行调查,发现其成绩都在90到150之间,频率分布直方图如图所示.
(1)直方图中x的值为
 

(2)在这些学生中,成绩在[110,150)内的学生人数为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

程序框图的运算结果为(  )
A、12B、24C、16D、48

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2cos
πx
3
(x≤2000)
2x-2010(x>2000)
,则f(f(2014))=(  )
A、
3
B、-
3
C、1
D、-1

查看答案和解析>>

同步练习册答案