精英家教网 > 高中数学 > 题目详情
18.若x>0,y>0,x+2y+2xy=8,则x+2y的最小值是(  )
A.$\frac{11}{2}$B.3C.$\frac{9}{2}$D.4

分析 首先分析题目由已知x>0,y>0,x+2y+2xy=8,求x+2y的最小值,猜想到基本不等式的用法,利用a+b≥2$\sqrt{ab}$ 代入已知条件,化简为函数求最值

解答 解:考察基本不等式x+2y=8-x•(2y)≥8-($\frac{x+2y}{2}$)2(当且仅当x=2y时取等号)
整理得(x+2y)2+4(x+2y)-32≥0
即(x+2y-4)(x+2y+8)≥0,又x+2y>0,
所以x+2y≥4(当且仅当x=2y时取等号),
则x+2y的最小值是 4,
故选:D.

点评 本题主要考查基本不等式的用法,对于不等式a+b≥2$\sqrt{ab}$在求最大值最小值的问题中应用非常广泛,需要同学们多加注意,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知角θ的终边过点(4,-3),则cos(π-θ)=(  )
A.$\frac{3}{5}$B.-$\frac{3}{5}$C.$\frac{4}{5}$D.-$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设函数f(x)在R上存在导函数f′(x),对?x∈R,f(-x)+f(x)=x2,且在(0,+∞)上,f′(x)>x.若有f(2-a)-f(a)≥2-2a,则实数a的取值范围为(  )
A.(-∞,1]B.[1,+∞)C.(-∞,2]D.[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知向量$\overrightarrow{a}$、$\overrightarrow{b}$满足|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=3,且|2$\overrightarrow{a}$-$\overrightarrow{b}$|=$\sqrt{13}$,则向量$\overrightarrow{a}$在向量$\overrightarrow{b}$方向上的投影为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知数列{an}满足a1=$\frac{1}{4}$,a2=$\frac{3}{4}$,2an=an+1+an-1(n≥2,n∈N*),数列{bn}满足b1=1,3bn-bn-1=n(n≥2,n∈N*),数列{bn}的前n项和为Sn
(1)求证:数列{bn-an}为等比数列;
(2)求数列{bn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若抛物线x2=12y与双曲线$\frac{x^2}{k}+\frac{y^2}{5}=1$有相同的焦点,则双曲线的离心率为$\frac{{3\sqrt{5}}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.某几何体的三视图如图所示,其中俯视图为半径为2的四分之一个圆弧,则该几何体的体积为8-2π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知全集U={1,2,3,4,5,6,7},A={l,2,3},B={2,5,7},则集合M∩(∁UB)=(  )
A.{1}B.{2}C.{1,3}D.{1,2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列函数中,既是奇函数又存在极值的函数是(  )
A.y=x3B.$y=x+\frac{1}{x}$C.y=x•e-xD.y=ln(-x)

查看答案和解析>>

同步练习册答案