精英家教网 > 高中数学 > 题目详情
10.某几何体的三视图如图所示,其中俯视图为半径为2的四分之一个圆弧,则该几何体的体积为8-2π.

分析 根据几何体的三视图,得出该几何体是一正方体,去掉一$\frac{1}{4}$圆柱体的组合体,再根据题目中的数据求出它的体积.

解答 解:根据几何体的三视图,得;
该几何体是一正方体,去掉一$\frac{1}{4}$圆柱体的组合体,
且正方体的棱长为2,
圆柱体的底面圆半径为2,高为2;
∴该几何体的体积为
V=V正方体-$\frac{1}{4}$V圆柱体
=23-$\frac{1}{4}$×π×22×2
=8-2π.
故答案为:8-2π.

点评 本题考查了空间几何体的三视图的应用问题,也考查了空间想象能力与计算能力,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=ln(x-1)-$\frac{ax}{x-1}$.
(1)讨论函数f(x)的单调性;
(2)若a∈[-e,-1],求f(x)的最小值的取值范围;
(3)设数列{an}是等差数列,且a1=-e,a2n=-1,证明:ln(a1a2a3…a2n)≤n(e+1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知向量|$\overrightarrow{a}$|=$\sqrt{5}$,$\overrightarrow{b}$=(1,0),$\overrightarrow{c}$=(3,4),若$\overrightarrow{a}$•$\overrightarrow{b}$=1,($\overrightarrow{a}$+λ$\overrightarrow{b}$)∥$\overrightarrow{c}$,则实数λ=$\frac{1}{2}$或$-\frac{5}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若x>0,y>0,x+2y+2xy=8,则x+2y的最小值是(  )
A.$\frac{11}{2}$B.3C.$\frac{9}{2}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知某中学高三学生共有800人参加了数学与英语水平测试,现学校决定利用随机数表法从中抽取100人的成绩进行统计,先将800人按001,002,…,800进行编号.
(Ⅰ)如果从第8行第7列的数开始向右读,请你依次写出最先检测的3个人的编号;(下面是随机数表的第7行至第9行)
84 42 17 53 31  57 24 55 06 88  77 04 74 47 67  21 76 33 50 26
83 92 53 16 59  16 92 75 38 62  98 21 50 71 75  12 86 73 63 01
58 07 44 39 13  26 33 21 13 42  78 64 16 07 82  52 07 44 38 15
(Ⅱ)抽取100人,数学与英语水平测试成绩分为优秀、良好、及格三个等级,相应人数如表所示(例如表中a表示数学优秀且英语及格的人数).
人数数    学
优秀良好及格
英语优秀7205
良好9186
及格a4b
①若在该样本中,数学成绩优秀率为30%,求a,b的值;
②当a≥10,b≥8时,在所有有序数对(a,b)中,求事件a<b的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.复数z满足z(3-4i)=1(i是虚数单位),则|z|=(  )
A.$\frac{{\sqrt{5}}}{5}$B.$\frac{{\sqrt{5}}}{25}$C.$\frac{1}{25}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设a,b,c为空间中三条不同的直线,给出如下两个命题:
①若a∥b,b⊥c,则a⊥c;②若a⊥b,b⊥c,则a∥c.
试类比以上某个命题,写出一个正确的命题:设α,β,γ为三个不同的平面,若α∥β,β⊥γ,则α⊥γ.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数g(x)=$\frac{1}{2}sin2x-\frac{{\sqrt{3}}}{2}$cos2x+1,x∈R,函数f(x)与函数g(x)的图象关于原点对称.
(1)求y=f(x)的解析式;
(2)求函数f(x)在[0,π]上的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.《张丘建算经》是我国北魏时期大数学家张丘建所著,约成书于公元466-485年间.其中记载着这么一道题:某女子善于织布,一天比一天织得快,而且每天增加的数量相同.已知第一天织布5尺,30天共织布390尺,则该女子织布每天增加$\frac{16}{29}$尺.(不作近似计算)

查看答案和解析>>

同步练习册答案