精英家教网 > 高中数学 > 题目详情
不用计算器计算:
(1)log3
27
+lg25+lg4+7log72+(-9.8)0
(2)(
27
8
)-
2
3
-(
49
9
)0.5
+(0.008)-
2
3
×
2
25
考点:对数的运算性质,根式与分数指数幂的互化及其化简运算
专题:函数的性质及应用
分析:(1)利用对数的运算法则即可得出.
(2)利用指数幂的运算法则即可得出.
解答: 解:(1)原式=log33
3
2
+lg(25×4)+2+1

=
3
2
+lg102+3

=
3
2
+2+3=
13
2

(2)原式=(
8
27
)
2
3
-(
49
9
)
1
2
+(
1000
8
)
2
3
×
2
25

=
4
9
-
7
3
+25×
2
25

=-
17
9
+2=
1
9
点评:本题考查了指数幂与对数的运算法则,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数f(x)=x3是(  )
A、奇函数
B、偶函数
C、非奇非偶函数
D、既是奇函数又是偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:

设a=20.3,b=30.2,c=ln
1
e
,则(  )
A、c<b<a
B、a<c<b
C、a<b<c
D、c<a<b

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,要测量河对岸A、B两点间的距离,今沿河岸选取相距40m的C、D两点,测得∠ACB=60°,∠BCD=45°,∠ADB=60°,∠ADC=30°,求AB的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

380°角是第几象限角(  )
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=
x2-3x
+
3
x-2
的定义域为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

命题“?x∈R,x≥sinx”的否定是(  )
A、?x∈R,x<sinx
B、?x∈R,x≤sinx
C、?x∈R,x<sinx
D、?x∈R,x<sinx

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=λ(x-1)-2lnx,g(x)=
1
e
x,(λ∈R,e为自然对数的底数)
(Ⅰ)当λ=1时,求函数f(x)的单调区间
(Ⅱ)函数f(x)在区间(e,+∞)上恒为正数,求λ的最小值
(Ⅲ)若对任意给定的x0∈(0,e]在(0,e]上总存在量不同的xi(i=1,2),使得f(xi)=g(x0)成立,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

P是椭圆
x2
16
+
y2
9
=1
上一点,F1、F2分别是椭圆的左、右焦点,若|PF1|•|PF2|=12,则∠F1PF2的大小为(  )
A、30°B、60°
C、120°D、150°

查看答案和解析>>

同步练习册答案