分析 根据积化和差公式,将f(x)转换为2sin(x+$\frac{π}{6}$),求得最小正周期,由sin(θ+$\frac{π}{6}$)=$\frac{1}{4}$,根据θ的取值范围,求得θ+$\frac{π}{6}$的取值范围,在求得cos(θ+$\frac{π}{6}$)的值,在利用θ+$\frac{π}{6}$-$\frac{π}{6}$,和积化和差公式求得sinθ的值
解答 解:(1)f(x)=(1+$\sqrt{3}$tanx)cosx
=cosx+$\sqrt{3}$sinx
=2sin(x+$\frac{π}{6}$)
∴f(x)的最小正周期为2π.
(2)由f(θ)=2sin(θ+$\frac{π}{6}$)=$\frac{1}{2}$
sin(θ+$\frac{π}{6}$)=$\frac{1}{4}$
θ∈(-$\frac{π}{6}$,$\frac{π}{3}$),θ+$\frac{π}{6}$∈(0,$\frac{π}{2}$),
则cos(θ+$\frac{π}{6}$)=$\frac{\sqrt{15}}{4}$
则sinθ=sin(θ+$\frac{π}{6}$-$\frac{π}{6}$)
=sin(θ+$\frac{π}{6}$)cos$\frac{π}{6}$-cos(θ+$\frac{π}{6}$)sin$\frac{π}{6}$
=$\frac{1}{4}$•$\frac{\sqrt{3}}{2}$-$\frac{\sqrt{15}}{4}$•$\frac{1}{2}$
=$\frac{\sqrt{3}-\sqrt{15}}{8}$
点评 主要考察函数的积化和差公式,求函数的周期,根据θ的取值范围,得到其余弦的取值,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1+2i | B. | 2+i | C. | 1+3i | D. | 3+i |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com