精英家教网 > 高中数学 > 题目详情
18.求过点P(-1,3)且平行于直线l:$\left\{\begin{array}{l}{x=1+t}\\{y=2-\sqrt{3}t}\end{array}\right.$(t为参数)的直线的参数方程.

分析 将P(-1,3)作为特殊点替换直线l中的点(1,2)即可.

解答 解:过点P且与直线l平行的直线的参数方程为$\left\{\begin{array}{l}{x=-1+t}\\{y=3-\sqrt{3}t}\end{array}\right.$(t为参数).

点评 本题考查了直线的参数方程,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.设复数z满足(1+i)z=2i,则z的共轭复数$\overline{z}$=(  )
A.-1-iB.-1-iC.1+iD.1-i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)左、右焦点分别为F1,F2点P在双曲线的右支上,且|PF1|=λ|PF2|(λ>1),$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=0,双曲线的离心率为$\sqrt{2}$,则λ=2+$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=(1+$\sqrt{3}$tanx)cosx.
(1)求函数f(x)的最小正周期;
(2)若f(θ)=$\frac{1}{2}$,θ∈(-$\frac{π}{6}$,$\frac{π}{3}$),求sinθ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知$\frac{1}{tanα}$+tanα=$\frac{5}{2}$,则2sin2(3π-α)-3cos($\frac{π}{2}$+α)•sin($\frac{3π}{2}$-α)+2的值为$\frac{12}{5}$或$\frac{6}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如图,焦点在x轴上的椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{3}$=1(a>0)的左、右焦点分别为F1、F2,P是椭圆上位于第一象限内的一点,且直线F2P与y轴的正半轴交于A点,△APF1的内切圆在边PF1上的切点为Q,若|F1Q|=4,则该椭圆的离心率为(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{\sqrt{7}}{4}$D.$\frac{\sqrt{13}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设x,y满足约束条件$\left\{\begin{array}{l}{x≤3}\\{x+y≥0}\\{x-y+6≥0}\end{array}\right.$,若z=ax+y的最大值为3a+9,最小值为3a-3,则a的取值范围是(  )
A.a≤-1B.a≥1C.-1≤a≤1D.a≥1或a≤-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知tanα、cotα是关于x的方程2x2-2kx=3-k2的两个方程根,π<α<$\frac{5}{4}$π,求cosα-sinα.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知α,β∈(0,$\frac{π}{2}$),sin(α-β)=-$\frac{1}{4}$,sinβ=$\frac{1}{3}$,求cosα的值.

查看答案和解析>>

同步练习册答案