精英家教网 > 高中数学 > 题目详情
2.已知抛物线y2=4x的焦点为F,过焦点F的直线l交抛物线于A、B两点,设AB的中点为M,A、B、M在准线上的射影依次为C、D、N.
(1)求直线FN与直线AB的夹角θ的大小;
(2)求证:点B、O、C三点共线.

分析 (1)先设A(x1,y1)、B(x2,y2)、中点M(x0,y0),利用斜率公式得出kFN=-$\frac{1}{2}$y0,再分类讨论:当x1=x2时,显然FN⊥AB;当x1≠x2时,证出kFN•kAB=-1.从而知FN⊥AB成立,即可得出结论.
(2)将焦点弦AB的直线的方程代入抛物线的方程,消去x得到关于y的一元二次方程,再结合直线斜率的关系即可证得B、O、C三点共线,从而解决问题.

解答 (1)解:设A(x1,y1)、B(x2,y2)、中点M(x0,y0),焦点F的坐标是(1,0).
kFN=-$\frac{1}{2}$y0,当x1=x2时,显然FN⊥AB;
当x1≠x2时,kAB=$\frac{{y}_{2}-{y}_{1}}{{x}_{2}-{x}_{1}}$=$\frac{2}{{y}_{0}}$,
∴kFN•kAB=-1.
∴FN⊥AB.综上所述知FN⊥AB成立,
即直线FN与直线AB的夹角θ的大小为90°;
(2)证明:由y=k(x-1)与抛物线方程联立,可得ky2-4y-4k=0,∴y1y2=-4,
∴A在准线上的射影为C,
∴C(-1,y1),∴kOC=-y1
∵kOB=$\frac{{y}_{2}}{{x}_{2}}$=$\frac{4}{{y}_{2}}$,y1y2=-4,
∴kOB=kOC,∴点B、O、C三点共线.

点评 本题给出抛物线过焦点的弦在准线上的射影,求证三点共线及线线角,着重考查了用解析几何理解抛物线的定义的知识点,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.设f(x)=|x+1|-|x-4|.
(1)若f(x)≤-m2+6m恒成立,求实数m的取值范围;
(2)设m的最大值为m0,a,b,c均为正实数,当3a+4b+5c=m0时,求a2+b2+c2的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知$\overrightarrow{a}$=(2$\sqrt{3}$sinx,sinx+cosx),$\overrightarrow{b}$=(cosx,sinx-cosx),函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$.
(Ⅰ)求函数f(x)的单调递减区间;
(Ⅱ)在△ABC中,内角A,B,C的对边分别为a,b,c,且b2+a2-c2=ab,若f(A)-m>0恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知向量$\overrightarrow{a}$=(-1,2),$\overrightarrow{b}$=(2,m),$\overrightarrow{c}$=(7,1),若$\overrightarrow{a}$∥$\overrightarrow{b}$,则$\overrightarrow{b}$•$\overrightarrow{c}$=(  )
A.8B.10C.15D.18

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.对于正整数n,设xn是关于x的方程nx3+2x-n=0的实数根,记an=[(n+1)xn](n≥2),其中[x]表示不超过实数x的最大整数,则$\frac{1}{1007}$(a2+a3+…+a2015)=2017.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在(x-$\frac{1}{x}$)10的二项展开式中,x4的系数等于(  )
A.-120B.-60C.60D.120

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.计算$\frac{cos10°-\sqrt{3}cos(-100°)}{\sqrt{1-sin10°}}$=$\sqrt{2}$(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.二分法是求方程近似解的一种方法,其原理是“一分为二,无限逼近”.执行如图所示的程序框图,若输入x1=1,x2=2,d=0.1,则输出n的值为(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设a=2ln$\frac{3}{2}$、b=log2$\frac{1}{3}$、c=($\frac{1}{2}$)-0.3,则(  )
A.c<a<bB.a<c<bC.a<b<cD.b<a<c

查看答案和解析>>

同步练习册答案