精英家教网 > 高中数学 > 题目详情
14.(1)已知a,b都是正实数,求证:$\frac{{a}^{2}}{b}$≥2a-b;
(2)已知a,b是任意实数  求证:a2+b2+3≥ab+$\sqrt{3}$(a+b)

分析 (1)由a2-2ab+b2≥0,可得a2≥2ab-b2,即可证明结论;
(2)利用基本不等式,即可证明结论.

解答 证明:(1)∵a2-2ab+b2≥0,
∴a2≥2ab-b2
∵a,b都是正实数,
∴$\frac{{a}^{2}}{b}$≥2a-b;
(2)a,b是任意实数,
∴a2+b2≥2ab,a2+3≥2$\sqrt{3}$a,b2+3≥2$\sqrt{3}$b,
相加,整理,可得a2+b2+3≥ab+$\sqrt{3}$(a+b).

点评 本题考查了不等式的证明,属于中档题.利用基本不等式进行构造是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.函数y=$\frac{{{{log}_2}(x-3)}}{{\sqrt{4-x}}}$的定义域是(  )
A.(-∞,4)B.(-∞,4]C.(3,4]D.(3,4)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设f(x)是(0,+∞)上的增函数,当n∈N+时,f(n)∈N+,且f[f(n)]=2n+1,则f(1)=2,f(2)=3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知圆C:x2+y2=2,圆M:(x-3)2+(y-3)2=8,则两圆的位置关系是(  )
A.相离B.相交C.外切D.内切

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知全集U={1,2,3,4,5,6},A={1,2,3,4},B={3,4,5,6},则B∩∁UA(  )
A.{5,6}B.{3,4,5,6}C.{1,2,5,6}D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知圆心为C的圆经过点A(1,1)和B(2,-2)且圆心C在直线上l:x-y+1=0
(1)圆心为C的圆的标准方程;
(2)若圆 C被过点(1,1)的直线l1截得的弦长为6,求直线l1的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知ab>0,则$\frac{b}{a}$+$\frac{a}{b}$的取值范围是[2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=x3-2x2+x+3,x∈[-2,1].求:
(1)f(x)的单调区间        
(2)f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.平面几何中,有“边长为a的正三角形内任一点到三边距离之和为定值$\frac{{\sqrt{3}}}{2}a$”,类比上述命题,棱长为a的正四面体内任一点到四个面的距离之和为$\frac{{\sqrt{6}}}{3}a$.

查看答案和解析>>

同步练习册答案