精英家教网 > 高中数学 > 题目详情
10.平面几何中,有“边长为a的正三角形内任一点到三边距离之和为定值$\frac{{\sqrt{3}}}{2}a$”,类比上述命题,棱长为a的正四面体内任一点到四个面的距离之和为$\frac{{\sqrt{6}}}{3}a$.

分析 由平面图形的性质向空间物体的性质进行类比时,常用的思路有:由平面图形中点的性质类比推理出空间里的线的性质,由平面图形中线的性质类比推理出空间中面的性质,由平面图形中面的性质类比推理出空间中体的性质.故我们可以根据已知中平面几何中,关于线的性质“正三角形内任意一点到三边距离之和是一个定值”,推断出一个空间几何中一个关于面的性质.

解答 解:类比在边长为a的正三角形内任一点到三边的距离之和为定值$\frac{{\sqrt{3}}}{2}a$,
在一个正四面体中,计算一下棱长为a的三棱锥内任一点到各个面的距离之和,
如图:
由棱长为a可以得到BF=$\frac{{\sqrt{3}}}{2}a$,BO=AO=$\frac{\sqrt{6}}{3}$a-OE,
在直角三角形中,根据勾股定理可以得到
BO2=BE2+OE2
把数据代入得到OE=$\frac{\sqrt{6}}{12}$a,
∴棱长为a的三棱锥内任一点到各个面的距离之和4×$\frac{\sqrt{6}}{12}$a=$\frac{{\sqrt{6}}}{3}a$.
故答案为:$\frac{{\sqrt{6}}}{3}a$.

点评 本题是基础题,考查类比推理及正四面体的体积的计算,转化思想的应用,考查空间想象能力,计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.(1)已知a,b都是正实数,求证:$\frac{{a}^{2}}{b}$≥2a-b;
(2)已知a,b是任意实数  求证:a2+b2+3≥ab+$\sqrt{3}$(a+b)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.等边三角形的边长为a,它绕其一边所在的直线旋转一周,则所得旋转体的体积为$\frac{π{a}^{3}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知α是第一象限角,那么$\frac{α}{2}$是第一或三象限角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图所示,经过村庄A有两条夹角为60°的公路AB,AC,根据规划拟在两条公路之间的区域内建一工厂P,分别在两条公路边上建两个仓库M,N(异于村庄A),要求PM=PN=MN=2(单位:千米).
(1)若△AMN的外接圆面积为S,求S的值;
(2)如何设计,使得工厂产生的噪声对居民的影响最小(即工厂与村庄的距离最远).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.由正弦的和角公式sin(α+β)=sinαcosβ+cosαsinβ与正弦二倍公式sin2α=2sinαcosα.求①sin3α=3sinα-4sin3α(用sinα表示);②利用二倍角和三倍角公式及$sinα=cos(\frac{π}{2}-α)$,求sin18°=$\frac{\sqrt{5}-1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知a>0,求证:$\sqrt{a+5}$-$\sqrt{a+3}$>$\sqrt{a+6}$-$\sqrt{a+4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设向量$\overrightarrow a$=(m-2,m+3),$\overrightarrow b$=(3,2),若$\overrightarrow a$与$\overrightarrow b$的夹角为钝角,则实数m的取值范围是(  )
A.(-∞,-13)∪(-13,0)B.(-∞,0)C.(-13,0)D.(-13,0)∪(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.把3、6、10、15、21、…这些数叫做三角形数,这是因为这些数目的点子可以排成一个正三角形(如图),试求第六个三角形数是(  )
A.27B.28C.29D.30

查看答案和解析>>

同步练习册答案