精英家教网 > 高中数学 > 题目详情
19.设向量$\overrightarrow a$=(m-2,m+3),$\overrightarrow b$=(3,2),若$\overrightarrow a$与$\overrightarrow b$的夹角为钝角,则实数m的取值范围是(  )
A.(-∞,-13)∪(-13,0)B.(-∞,0)C.(-13,0)D.(-13,0)∪(0,+∞)

分析 $\overrightarrow a$与$\overrightarrow b$的夹角为钝角,可得:$\overrightarrow{a}•\overrightarrow{b}$=3(m-2)+2(m+3)<0,且不能反向共线,即3(m+3)-2(m-2)≠0,解出即可得出.

解答 解:∵$\overrightarrow a$与$\overrightarrow b$的夹角为钝角,∴$\overrightarrow{a}•\overrightarrow{b}$=3(m-2)+2(m+3)<0,
且不能反向共线,即3(m+3)-2(m-2)≠0,
解得m<0,m≠-13.
则实数m的取值范围是(-∞,-13)∪(-13,0),
故选:A.

点评 本题考查了向量的夹角公式、不等式的解法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=x3-2x2+x+3,x∈[-2,1].求:
(1)f(x)的单调区间        
(2)f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.平面几何中,有“边长为a的正三角形内任一点到三边距离之和为定值$\frac{{\sqrt{3}}}{2}a$”,类比上述命题,棱长为a的正四面体内任一点到四个面的距离之和为$\frac{{\sqrt{6}}}{3}a$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在△ABC中,a、b、c分别为角A、B、C所对的边,cosA=$\frac{4}{5}$,b=2,c=5,则a为(  )
A.13B.$\sqrt{13}$C.17D.$\sqrt{17}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设函数f(x)=(1-2x)10,则导函数f′(x)的展开式x2项的系数为-2880.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知$\overrightarrow{e_1}$、$\overrightarrow{e_2}$是表示平面内所有向量的一组基底,那么下面四组向量中,不能作为一组基底的是(  )
A.$\overrightarrow{e_1},\overrightarrow{e_1}-\overrightarrow{e_2}$B.$\overrightarrow{e_1}+\overrightarrow{e_2},\overrightarrow{e_1}-\overrightarrow{e_2}$
C.$\overrightarrow{e_1}+2\overrightarrow{e_2},-2\overrightarrow{e_1}+\overrightarrow{e_2}$D.$\overrightarrow{e_1}-\overrightarrow{3{e_2}},-2\overrightarrow{e_1}+6\overrightarrow{e_2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若函数f(x)=$\left\{\begin{array}{l}x-1,x≤1\\{x^2}-4x+3,x>1\end{array}\right.$,则g(x)=f(x)-lnx的零点个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左右焦点分别为F1,F2离心率为$\frac{{\sqrt{3}}}{2}$,圆O:x2+y2=1的切线l与椭圆C相交于A,B两点,满足|AF1|+|AF2|=4.
(1)求椭圆C的标准方程;
(2)当弦长|AB|=$\sqrt{3}$时,求切线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.掷两颗均匀的骰子,则点数之和为4的概率等于(  )
A.$\frac{1}{18}$B.$\frac{1}{9}$C.$\frac{1}{6}$D.$\frac{1}{12}$

查看答案和解析>>

同步练习册答案