精英家教网 > 高中数学 > 题目详情
4.在锐角△ABC中,角A,B,C所对的边分别为a,b,c.若a=2$\sqrt{7}$sinA,b=$\sqrt{21}$,a=3c,则c=$\sqrt{3}$.

分析 a=2$\sqrt{7}$sinA,b=$\sqrt{21}$,由正弦定理可得:$\frac{c}{sinC}=\frac{b}{sinB}=\frac{a}{sinA}$=2$\sqrt{7}$,可得$sinB=\frac{\sqrt{3}}{2}$,解得B.再由a=3c及其余弦定理可得:b2=a2+c2-2accosB,解出即可.

解答 解:∵a=2$\sqrt{7}$sinA,b=$\sqrt{21}$,
由正弦定理可得:$\frac{c}{sinC}=\frac{b}{sinB}=\frac{a}{sinA}$=2$\sqrt{7}$,
∴$sinB=\frac{\sqrt{3}}{2}$,
∵B为锐角,∴B=$\frac{π}{3}$.
由余弦定理可得:b2=a2+c2-2accosB,
∴21=9c2+c2-$6{c}^{2}×\frac{1}{2}$,
化为c2=3,
解得c=$\sqrt{3}$.
故答案为:$\sqrt{3}$.

点评 本题考查了正弦定理与余弦定理的应用,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=cos2x,g(x)=$\frac{1}{2}+\sqrt{3}$sinxcosx.
(1)若直线x=a是函数y=f(x)的图象的一条对称轴,求g(2a)的值;
(2)若0≤x≤$\frac{π}{2}$,求h(x)=f(x)+g(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知圆过(0,0)点且与直线2x+y-5=0相切于点P(1,3),过B(1,a)作圆两条切线,切点为M,N,若|MN|≤$\frac{\sqrt{30}}{2}$,求a取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知椭圆C的中心在坐标原点,焦点在x轴上,其离心率为$\frac{\sqrt{5}}{3}$,短轴的端点是B1,B2,点M(2,0)是x轴上的一定点,且MB1⊥MB2
(1)求椭圆C的方程;
(2)设过点M且斜率存在且不为0的直线交椭圆于A、B两点,试问x轴上是否存在定点P,使直线PA与PB的斜率互为相反数?若存在,求出P点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在四棱锥P-ABCD中,AD⊥平面PDC,PD⊥DC,底面ABCD是梯形,AB∥DC,AB=AD=PD=1,CD=2
(1)求证:平面PBC⊥平面PBD;
(2)设Q为棱PC上一点,$\overrightarrow{PQ}$=λ$\overrightarrow{PC}$,试确定 λ的值使得二面角Q-BD-P为60°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.阅读如下程序框图,如果输出i=4,那么空白的判断框中应填入的条件是(  )
A.S<8?B.S<12?C.S<14?D.S<16?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数y=cos(sinx)的图象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数y=ax(a>0,a≠1)与y=xb的图象如图,则下列不等式一定成立的是(  )
A.ba>0B.a+b>0C.ab>1D.loga2>b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若复数z满足z-|z|=3-i,则z的虚部为(  )
A.1B.-1C.iD.-i

查看答案和解析>>

同步练习册答案