精英家教网 > 高中数学 > 题目详情
15.已知函数f(x)=cos2x,g(x)=$\frac{1}{2}+\sqrt{3}$sinxcosx.
(1)若直线x=a是函数y=f(x)的图象的一条对称轴,求g(2a)的值;
(2)若0≤x≤$\frac{π}{2}$,求h(x)=f(x)+g(x)的值域.

分析 (1)利用二倍角公式化简函数的表达式,通过直线x=a是函数y=f(x)的图象的一条对称轴,求出a,然后求g(2a)的值;
(2)化简h(x)=f(x)+g(x)为正弦函数类型,利用角的范围求出相位的范围,然后去函数值域.

解答 解:(1)$f(x)={cos^2}x=\frac{1+cos2x}{2}$,
其对称轴为$2x=kπ,x=\frac{kπ}{2},k∈Z$,
因为直线线x=a是函数y=f(x)的图象的一条对称轴,
所以$a=\frac{kπ}{2},k∈Z$,
又因为$g(x)=\frac{1}{2}+\frac{{\sqrt{3}}}{2}sin2x$,所以$g({2a})=g({kπ})=\frac{1}{2}+\frac{{\sqrt{3}}}{2}sin({2kπ})=\frac{1}{2}$
即$g({2a})=\frac{1}{2}$.
(2)由(1)得
$\begin{array}{c}h(x)=f(x)+g(x)=\frac{1}{2}cos2x+\frac{\sqrt{3}}{2}sin2x+1\end{array}\right.$
=$sin(2x+\frac{π}{6})+1$
∵$x∈[{0,\frac{1}{2}}]$,
∴$2x+\frac{π}{6}∈[\frac{π}{6},\frac{7π}{6}],sin(2x+\frac{π}{6})∈[-\frac{1}{2},1]$,
∴$sin(2x+\frac{π}{6})+1∈[\frac{1}{2},2]$.
所以h(x)的值域为$[{\frac{1}{2},2}]$.

点评 本题考查三角函数的化简求值,对称性的应用,三角函数的最值求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.用0,1,2,3,4五个数组成无重复数字的五位数.其中1与3不相邻,2与4也不相邻,则这样的五位整数共有40个.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=4cosxsin(x+φ)-1(0<φ<π),若f($\frac{π}{3}$)=1,则f(x)的最小正周期为(  )
A.πB.$\frac{3π}{2}$C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率为$\frac{{\sqrt{2}}}{2}$,且过点$(\sqrt{2},1)$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点M(3,2)的直线与椭圆C相交于两不同点A、B,且$\overrightarrow{AM}=λ\overrightarrow{BM}$.在线段AB上取点N,若$\overrightarrow{AN}=-λ\overrightarrow{BN}$,证明:动点N在定直线上.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若$\frac{m+i}{1+i}=i$(i为虚数单位),则实数m=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知点A(-2,1)和圆C:(x-2)2+(y-2)2=1,一条光线从A点发射到x轴上后沿圆的切线方向反射,则这条光线从A点到切点所经过的路程是2$\sqrt{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知$A=\{x|5-x≥\sqrt{2(x-1)}\}$,B={x|x2-ax≤x-a},当“x∈A”是“x∈B”的充分不必要条件,则a的取值范围是(3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知A={x|x=3k-1,k∈Z},则下列表示正确的是(  )
A.-1∉AB.-11∈AC.3k+2∉AD.3k2-1∈A

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在锐角△ABC中,角A,B,C所对的边分别为a,b,c.若a=2$\sqrt{7}$sinA,b=$\sqrt{21}$,a=3c,则c=$\sqrt{3}$.

查看答案和解析>>

同步练习册答案